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Introduction 
The widespread use of Computer-assisted diagnosis (CAD) can be traced back to 
the emergence of digital mammography in the early 1990’s [1]. Recently, CAD 
has become a part of routine clinical detection of breast cancer on mammograms 
at many screening sites and hospitals [2] in the United States. In fact, CAD has 
become one of the major research subjects in medical imaging and diagnostic 
radiology. Given recent advances in high-throughput tissue bank and archiving 
of digitized histological studies, it is now possible to use histological tissue 
patterns with computer-aided image analysis to facilitate disease classification. 
There is also a pressing need for CAD to relieve the workload on pathologists by 
sieving out obviously benign areas, so that pathologist can focus on the more 
difficult-to-diagnose suspicious cases. For example, approximately 80% of the 1 
million prostate biopsies performed in the US every year are benign; this 
suggests that prostate pathologists are spending 80% of their time sieving 
through benign tissue. 

Researchers both in the image analysis and pathology fields have recognized the 
importance of quantitative analysis of pathology images.  Since most current 
pathology diagnosis is based on the subjective (but educated) opinion of 
pathologists, there is clearly a need for quantitative image-based assessment of 
digital pathology slides. This quantitative analysis of digital pathology is 
important not only from a diagnostic perspective, but also in order to 
understand the underlying reasons for a specific diagnosis being rendered (e.g., 
specific chromatin texture in the cancerous nuclei which may indicate certain 
genetic abnormalities). In addition, quantitative characterization of pathology 
imagery is important not only for clinical applications (e.g., to reduce/eliminate 
inter- and intra-observer variations in diagnosis) but also for research 
applications (e.g., to understand the biological mechanisms of the disease 
process). 

A large focus of pathological image analysis has been on the automated analysis 
of cytology imagery.  Since cytology imagery often results from the least invasive 
biopsies (e.g., the cervical Pap smear), they are some of the most commonly 
encountered imagery for both disease screening and biopsy purposes. 
Additionally, the characteristics of cytology imagery, namely the presence of 
isolated cells and cell clusters in the images and the absence of more complicated 



structures such as glands make it easier to analyze these specimens compared to 
histopathology. For example, the segmentation of individual cells or nuclei is a 
relatively easier process in such imagery since most of the cells are inherently 
separated from each other.   

Histopathology slides, on the other hand, provide a more comprehensive view 
of disease and its effect on tissues, since the preparation process preserves the 
underlying tissue architecture. As such, some disease characteristics, e.g., 
lymphocytic infiltration of cancer, may be deduced only from a histopathology 
image. Additionally, the diagnosis from a histopathology image remains the ‘gold 
standard’ in diagnosing considerable number of diseases including almost all 
types of cancer [3]. The additional structure in these images, while providing a 
wealth of information, also presents a new set of challenges from an automated 
image analysis perspective. It is expected that the proper leverage of this spatial 
information will allow for more specific characterizations of the imagery from a 
diagnostic perspective. The analysis of histopathology imagery has generally 
followed directly from techniques used to analyze cytology imagery. In 
particular, certain characteristics of nuclei are hallmarks of cancerous 
conditions. Thus, quantitative metrics for cancerous nuclei were developed to 
appropriately encompass the general observations of the experienced 
pathologist, and were tested on cytology imagery. These same metrics can also 
be applied to histopathological imagery, provided histological structures such as 
cell nuclei, glands, and lymphocytes have been adequately segmented (a 
complication due to the complex structure of histopathological imagery). The 
analysis of the spatial structure of histopathology imagery can be traced back to 
the works of Wiend et al. [4], Bartels [5] and Hamilton [6] but has largely been 
overlooked perhaps due to the lack of computational resources and the relatively 
high cost of digital imaging equipment for pathology. However, spatial analysis of 
histopathology imagery has recently become the backbone of most automated 
histopathology image analysis techniques. Despite the progress made in this area 
thus far, this is still a large area of open research due to the variety of imaging 
methods and disease-specific characteristics.  
 

Feature extraction 
 

Research on useful features for disease classification has often been inspired by 
visual attributes defined by clinicians as particularly important for disease 
grading and diagnosis. The vast majority of these features are nuclear features, 
and many have been established as useful in analysis of both cytopathology and 
histopathology imagery.  Other features that assume discriminatory importance 
include the margin and boundary appearance of ductal, stromal, tubular and 
glandular structures. While there is a compilation of features for cytopathology 
imagery [10], there is relatively little such work for histopathology imagery.  

Humans' concept of the world is inherently object-based, as opposed to the 
largely pixel-based representation of computer vision. As such, human experts 



describe and understand images in terms of such objects. For pathologists, 
diagnosis criteria are inevitably described using terms such as “nucleus” and 
“cell.” It is thus important to develop computer vision methods capable of such 
object-level analysis.  

 

 

5.1 Object Level Features:  

Fundamentally, object-level analysis depends greatly on some underlying 
segmentation mechanism. It is the segmentation methodology that determines 
what constitutes an object. Commonly, an object is defined as a connected group 
of pixels satisfying some similarity criterion. The main focus is often on the 
segmentation of nuclei; there exists little work that explicitly uses features of 
cytoplasm and stroma, although some researchers have hinted at the need for 
such features [11,12]. Preliminary work [13] has demonstrated the feasibility of 
other histologic features for image classification in H&E stained breast cancer. 
Madabhushi et al.  [8] used cytoplasmic and stromal features to automatically 
segment glands in prostate histopathology. Moreover, it appears that histologic 
objects may not need to be perfectly segmented to be properly classified when a 
list of comprehensive features is used in a feature selection framework [13][84]. 
Classification performance in distinguishing between different grades of prostate 
cancer was found to be comparable using manual and automated gland and 
nuclear segmentation [8]. These results suggest that perfect segmentation is not 
a prerequisite for good classification. 

Object-level features can be categorized as belonging to one of four categories: 
size and shape, radiometric and densitometric, texture, and chromatin-specific. 
While the radiometric and densitometric, texture, and chromatin-specific 



features could be considered low-level features that can be extracted from local 
neighborhoods, the size and shape metrics are true object-level metrics. A 
summary of object-level features is listed in Table 5.1; definitions for all listed 
features can be found in reference [13]. These features were compiled from a 
comprehensive literature search on cytopathology and histopathology image 
analysis. In addition, various statistics measures for any of the vector quantities 
are also commonly calculated. Thus, the mean, median, minimum, maximum, 
standard deviation, skewness, and kurtosis can be calculated for all vector 
features. For an RGB image, all relevant features are extracted for each individual 
color channel; hence the total number of object-level features can easily exceed 
1000 for the list of features in Table 1. It should be noted that these features are 
most commonly extracted from high-resolution imagery (see next section), but 
are relevant for any resolution. 

An approach that semantically describes histopathology images using model 
based intermediate representation (MBIR) and incorporates low-level color 
texture analysis was presented in [14]. In this approach, basic cytological 
components in the image are first identified using an unsupervised clustering in 
the La*b* color space. The connected components of nuclei and cytoplasm 
regions were modeled using ellipses. An extensive set of features can be 
constructed from this intermediate representation to characterize the tissue 
morphology as well as tissue topology. Using this representation, the relative 
amount and spatial distribution of these cytological components can be 
measured. In the application of follicular lymphoma grading, where the spatial 
distribution of these regions varies considerably between different histological 
grades, MBIR provides a convenient way to quantify the corresponding 
observations. Additionally, low-level color texture features are extracted using 
the co-occurrence statistics of the color information. Due to the staining of the 
tissue samples, the resulting digitized images have considerably limited dynamic 
ranges in the color spectrum. Taking this fact into account, a non-linear color 
quantization using self-organizing maps (SOM) is used to adaptively model the 
color content of microscopic tissue images. The quantized image is used to 
construct the co-occurrence matrix from which low-level color texture features 
are extracted. By combining the statistical features constructed from the MBIR 
with the low-level color texture features, the classification performance of the 
system can be improved significantly.  

 



 

Fig. 1: Supervised extraction of histological features to describe tissue appearance 
of (a) benign epithelium, and (b) DCIS. Feature images for the two tissue classes (benign epithelium, 
DCIS) corresponding to Gabor wavelet features (b), (e) and Haralick second order features (c), (f) are 

shown. 

 

 

Fig. 2: Bone fracture and its corresponding ECM-aware cell-graph representation. Note the presence 
of a link between a pair of nodes in an ECM-aware cell-graph indicates not only topological closeness 

but also it implies the similarity in the surrounding ECM [19]. 

 

Figure 1 shows some of the textural image features for discriminating between 
benign breast epithelial tissue [9] (DCIS, Figure 1(a)) and DCIS (Figure 1(d)). 
Figures 1(b, e) show the corresponding Gabor filter responses while Figures 1(c, 
f ) show the corresponding Haralick feature images.  

 

5. 2: Spatially Related Features 

Graphs are efficient data structures to represent spatial data and an effective 
way to represent structural information by defining a large set of topological 
features. Formally, a simple graph 



G  (V,E) is an undirected and un-weighted 



graph without self-loops, with V and E being the node and edge set of graph G, 
respectively.  

Application of graph theory to other problem domains is impressive. Real-world 
graphs of varying types and scales have been extensively investigated in 
technological [15], social [16] and biological systems [17]. In spite of their 
different domains, such self-organizing structures unexpectedly exhibit common 
classes of descriptive spatial (topological) features. These features are quantified 
by definition of computable metrics.  

The use of spatial-relation features for quantifying cellular arrangement was 
proposed in the early 1990's [18], but didn't find application to clinical imagery 
until recently. Graphs have now been constructed for modeling different tissue 
states and to distinguish one state from another by computing metrics on these 
graphs and classifying their values. Overall, however, the use of spatial 
arrangement of histological entities (generally at low resolutions) is relatively 
new, especially in comparison to the wealth of research on nuclear features (at 
higher resolutions) that has occurred during the same timeframe. A compilation 
of all the spatial-relation features published in the literature is summarized in 
Table 2. Definitions for all graph structures and features can be found in 
reference [13]. The total number of spatial-relation features extracted is 
approximately 150 for all graph structures. 

Graph theoretical metrics that can be defined and computed on a cell-graph 
induce a rich set of descriptive features that can be used for tissue classification. 
These features provide structural information to describe the tissue organization 
such as: (i) the distribution of local information around a single cell cluster (e.g., 
degree, clustering coefficient, etc), (ii) the distribution of global information 
around a single cell cluster (e.g., eccentricity, closeness, between-ness, etc.), (iii) 
the global connectivity information of a graph (e.g., ratio of the giant connected 
component over the graph size, percentage of the isolated and end data points in 
the graph, etc), (iv) the properties extracted from the spectral graph theory (e.g., 
spectral radius, eigen exponent, number of connected components, sum of the 
eigenvalues in the spectrum, etc).   Refer to Table 2 for a list of commonly 
extracted graph features. 



 

5.2.1 2D Cell-graph construction  

In cell-graph generation as proposed in [19], there are three steps: (i) color 
quantization, (ii) node identification, and (iii) edge establishment. In the first 
step, the pixels belonging to cells from those of the others are distinguished. 
These steps are explained in the next sub-sections.  

 

i. Node identification:  
  
The class information of the pixels is translated to the node information of a 
cell-graph. At the end of this step, the spatial information of the cells is 
translated to their locations in the two-dimensional grid. After computing 
the probabilities, these are compared against a threshold value.  

 

ii. Edge establishment: 
 
This step aims to model pair-wise relationships between cells by 
assigning an edge between them. Cells that are in physical contact are 
considered to be in communication, thus edges can be established 
between them deterministically. For other node pairs, a probability 
function is used to establish edges between a pair of nodes randomly. 
Since structural properties of different tissues (e.g., breast, bone and 



brain) are quite different from each other, edge establishment must be 
guided by biological hypothesis. 

 

5.2.2. 3D Cell-graphs: 

The first step in 3D cell-graph construction is to define the distance between a 
pair of nodes, which is simply the 3D Euclidean distance between a pair of nodes. 
Based on this distance definition, edges can be established between a pair of 
nodes. In addition to the simple spatial distance metrics, a multi-dimensional 
distance measure can be defined using the cell-level attributes that can be 
provided by sophisticated image analysis and segmentation. Cell-level attributes 
include: x, y, z physical contact, volume with respect to number of pixels, 
peripheral (i.e., surface area), shared border as percentage of shared voxels 
relative to total, and polarity. Then each node of the 3D cell-graph can be 
represented by a vector of v-dimensions, each dimension corresponding to an 
attribute. The Lp norm can be used to compute the multidimensional distance 
between them. Once the notion of distance is determined, edge functions of cell-
graphs can be applied to construct 3D cell-graphs. The mathematical properties 
of cell-graphs in 3D can be calculated as the feature set. Although most of the 
features defined on 2D cell-graphs can be extended to the 3D case, their 
calculation is not trivial. 

 

5.2.3 Application of Graph based modeling for different histopathology 
related applications 

 

A. Graph based Modeling of Extra Cellular Matrix: 
The Extra Cellular Matrix (ECM) is composed of a complex network of proteins 
and oligosaccharides that play important roles in cellular activities such as 
division, motility, adhesion, and differentiation.  Recently, a new technique was 
introduced for constructing ECM-aware cell-graphs that incorporates the ECM 
information surrounding the cells [20].  ECM-aware cell-graphs aim to preserve 
the interaction between cells and their surrounding ECM while modeling and 
classifying the tissues. The ECM-aware cell-graphs successfully distinguish 
between different types of cells that co-exist in the same tissue sample. For 
example, in bone tissue samples there are usually several cell types, including 
blood cells, normal cells, and sometimes fracture cells (e.g., chondrocytes and 
osteoblasts) and cancerous cells.  Since these cells are functionally different from 
each other, the hypothesis is that they would exhibit different spatial 
organization and structural relationships in the same tissue. This hypothesis has 
been validated by showing that ECM-aware cell-graphs yield better classification 
results for different states of bone tissues than the current state of art.  In the 
construction a color value is assigned to each cell (i.e., vertex) based on the RGB 
values of its surrounding ECM. This is done by examining the k neighboring 
pixels in each direction, and computing a dominant color for the ECM 
surrounding each cell using the RGB values of nearly 4k2 neighboring pixels. 



 

Fig. 3: Illustrating the differences between cell-graphs for cancerous, healthy, and inflamed brain 
tissues. Panels (a)-(c) show brain tissue samples that are (a) cancerous (gliomas), (b) healthy, and (c) 
inflamed, but noncancerous. Panels (d)-(f) show the cell-graphs corresponding to each tissue image. 

While the number of cancerous and inflamed tissue samples appear to have similar numbers and 
distributions of cells, the structure of their resulting cell-graphs shown in (d) and (f) are dramatically 

different. (Figure is taken from [20]). 

 

B. Application to Discriminating Different States of Brain Tissue 

Figure 3 shows the cell-graphs of brain tissues exhibiting distinctive graph 
properties that enable discrimination between the different states of brain 
tissue. 

 
C. Application to Studying Temporal Activity of Adult Human Mesenchymal 

Stems Cells in a 3D Collagen Matrix 
 

Figure 4 shows relationships between adult human mesenchymal stem cells in a 
3D collagen protein matrix over time in culture [20]. The graphs are generated 
from 3D sections of tissue (900X900X80 μm) imaged using confocal microscopy. 
The nuclei of stem cells in the constructs were stained and imaged at the time 
points indicated (0 – 24 hours). 



 

Fig. 4: Cell graphs produced from human MSC embedded in 3-D collagen matrices. Graphs shownuclei 
and development of edges (relationships) between them over time [19]. There is a phase transition 

sometime between hour 10 and hour 16 and the graph becomes connected. 

 
D. Application of Graph Theory to Modeling Cancer Grade 
In [22], the Voronoi diagram is constructed from a set of seed-like points that 
denote the centers of each structure of interest (nuclei). From the Voronoi 
diagram, two more graphs of interest can be constructed: the Delaunay 
triangulation, which is created by connecting points that share an edge in the 
Voronoi diagram, and the minimum spanning tree, which is the series of lines 
that spans the set of points such that the Euclidean sum of the lengths of the lines 
is smaller than any other spanning tree. From each of these three graphs, a series 
of features are calculated that captures the size, shape, and arrangement of the 
structures of the nuclei. The graph based representations of a Gleason grade 4 
prostate histopathology image are shown in Figure 5. 



 

Fig. 5: (a) A digitized histopathology image of Grade 4 CaP and different graph-based representations 
of tissue architecture via Delaunay Triangulation, Voronoi Diagram, and Minimum Spanning tree. 

 

5.3. Multi-scale feature extraction 

Owing to the density of the data and the fact that pathologists tend to employ a 
multi-resolution approach to analyzing pathology data, feature values are related 
to the viewing scale or resolution. For instance at low or coarse scales color or 
texture cues are commonly used and at medium scales architectural 
arrangement of individual histological structures (glands and nuclei) start to 
become resolvable.  It is only at higher resolutions that morphology of specific 
histological structures can be discerned.  

In [23, 24], a multi-resolution approach has been used for the classification of 
high-resolution whole-slide histopathology images. The proposed multi-
resolution approach mimics the evaluation of a pathologist such that image 
analysis starts from the lowest resolution, which corresponds to the lower 
magnification levels in a microscope and uses the higher resolution 
representations for the regions requiring more detailed information for a 
classification decision. To achieve this, images were decomposed into multi-
resolution representations using the Gaussian pyramid approach [25]. This is 
followed by color space conversion and feature construction followed by feature 
extraction and feature selection at each resolution level. Once the classifier is 
confident enough at a particular resolution level, the system assigns a 
classification label (e.g., stroma-rich, stroma-poor or undifferentiated, poorly 
differentiating, differentiating) to the image tile. The resulting classification map 
from all image tiles forms the final classification map. The classification of a 
whole-slide image is achieved by dividing into smaller image tiles and processing 
each image tile independently in parallel on a cluster of computer nodes.  

As an example, refer to Figure 6, showing a hierarchical cascaded scheme for 
detecting suspicious areas on digitized prostate histopathology slides as 
presented in [26]. 



 

Fig. 6: Digitized histological image at successively higher scales (magnifications) 
yields incrementally more discriminatory information in order to detect 

suspicious regions. 

 

Figure 7 shows the results of a hierarchical classifier for detection of prostate 
cancer from digitized histopathology. Figure 7(a) shows the original images with 
tumor outlined in black. The next 3 columns show the classifier results at 
increasing analysis scales. Pixels classified as “non-tumor” at a lower 
magnification (scale) are discarded at the subsequent higher scale, reducing the 
number of pixels needed for analysis at higher scales. Additionally, the presence 
of more discriminating information at higher scales allows the classifier to better 
distinguish between tumor and non-tumor pixels. 

 

Fig. 7: Results from the hierarchical machine learning classifier. (a) Original 
image with the tumor region (ground truth) in black contour, (b) results at scale 

1, (c) results at scale 2, and (d) results at scale 3. Note that only areas determined 
as suspicious at lower scales are considered for further analysis at higher scales. 

At lower resolutions of histological imagery, textural analysis is commonly used 
to capture tissue architecture, i.e. the overall pattern of glands, stroma and organ 
organization. For each digitized histological image several hundred 
corresponding feature scenes can be generated. Texture feature values are 
assigned to every pixel in the corresponding image. 3D statistical, gradient, and 
Gabor filters can be extracted in order to analyze the scale, orientation, and 
anisotropic information of the region of interest. Filter operators are applied in 
order to extract features within local neighborhoods centered at every spatial 
location. At medium resolution, architectural arrangement of nuclei within each 
cancer grade can be described via several graph-based algorithms. At higher 
resolutions, nuclei and the margin and boundary appearance of ductal and 
glandular structures have proved to be of discriminatory importance.  Many of 
these features are summarized in Tables 1 and 2. 

 

5.4. Feature Selection, Dimensionality Reduction, and Manifold Learning 

A. Feature Selection 



While humans have innate abilities to process and understand imagery, they do 
not tend to excel at explaining how they reach their decisions. As such, large 
feature sets are generated in the hopes that some subset of features incorporates 
the information used by the human expert for analysis. Therefore, many of the 
generated features could be redundant or irrelevant. Actually, a large set of 
features may possibly be detrimental to the classification performance, a 
phenomenon known as “the curse of dimensionality.” Feature selection is a 
means to select the relevant and important features from a large set of features. 
This is an increasingly important area of research now that automated 
quantitative image analysis techniques are becoming more mainstream. 

Feature selection in histopathological image analysis provides several benefits in 
addition to improving accuracy. Since images tend to be relatively large, a 
smaller subset of features needs to be calculated, reducing the computational 
complexity of classification algorithms. In some applications, it may be 
preferable to sacrifice the overall performance slightly if this sacrifice greatly 
reduces the number of selected features. A smaller number of features would 
also make it easier to explain the underlying model and improve the chances of 
generalization of the developed system.  Additionally, in a multi-resolution 
framework, a set of features proven useful at a given resolution may not be 
relevant at another resolution, even within the same image. A feature selection 
algorithm helps determine which features should be used at a given resolution.  

An optimal feature selection method would require an exhaustive search, which 
is not practical for a large set of features generated from a large dataset. 
Therefore, several heuristic algorithms have been developed, which use 
classification accuracy as the optimality criterion. Well-known feature selection 
methods include the sequential search methods, namely sequential forward 
selection (SFS) and sequential backward selection (SBS) [27]. SFS works by 
sequentially adding the feature that most improves the classification 
performance; similarly, SBS begins with the entire feature set and sequentially 
removes the feature that most improves the classification performance. Both SFS 
and SBS suffer from the “nesting effect” whereby features that are selected (SFS) 
or discarded (SBS) cannot be revisited in a later step and are thus suboptimal 
[27]. The use of floating search methods, sequential floating forward search 
(SFFS) and sequential floating backward search (SFBS), in which previously 
selected or discarded features can be re-evaluated at later steps avoids the 
nesting problem [27]. While these methods still cannot guarantee optimality of 
the selected feature subset, they have been shown to perform very well 
compared to other feature selection methods [28] and are, furthermore, much 
more computationally efficient [27].  SFFS is one of the most commonly 
encountered feature selection methods in pathology image analysis literature. 

More recent feature selection research has focused on such methods as genetic 
algorithms, simulated annealing, boosting [29] and grafting [30]. A taxonomy of 
feature selection algorithms is presented in [28]. Genetic algorithms and 
simulated annealing are applications of traditional optimization techniques to 
feature selection. Boosting, which will be explained in Section 6.c, basically acts 
as a greedy feature selection process. Grafting (from “gradient feature testing”) 
[30] is based on an elegant formulation of the feature selection problem, 



whereby the classification of the underlying data and the feature selection 
process are not separated. Within the grafting framework, a loss function is used 
that shows preference for classifiers that separate the data with larger margins. 
Grafting also provides an efficient framework for selection of relevant features. 
Feature selection based on a measure of discriminatory power was proposed in 
[31], whereby the authors compute the discriminatory power of each of the 
wavelet packet sub-bands (features) using a dissimilarity measure between 
approximated probability density functions for different classes. Derived 
features are then sorted according to the discriminatory power values associated 
with the corresponding features.  

 

B. Dimensionality Reduction 

While feature selection aims to select features (and reduce the feature 
dimensionality) that best optimize some criterion related to the class labels of 
the data (e.g., classification performance), dimensionality reduction techniques 
aim to reduce dimensionality based on some other criterion.  Three well-known 
and commonly used methods of linear dimensionality reduction are Principal 
Component Analysis (PCA), Independent Component Analysis (ICA), and Linear 
Discriminant Analysis (LDA).   

Principal Component Analysis (PCA) [32] looks to find a new orthogonal 
coordinate system whereby the maximum variance of the data is incorporated in 
the first few dimensions.  Projection of the data onto the individual coordinates 
encompasses varying degrees of variance; the first coordinate encompasses the 
largest variance in the data, the second coordinate the next largest variance, and 
so forth.   

On the other hand, the LDA is a supervised method; it thus requires class labels 
for each data sample, mapping the data onto a lower dimensional subspace that 
best discriminates data. The goal is to find the mapping, where the sum of 
distances between samples in different classes is maximized; while the sum of 
distances between samples in same classes is minimized. LDA can also be 
formulated in terms of eigenanalysis. A comprehensive discussion of PCA and 
LDA can be found in [33]. 

 

Independent Component Analysis [34], looks to find some mixing matrix such 
that a mixture of the observations (features) are statistically independent.  This 
provides a stronger constraint on the resulting components than PCA, which 
only requires that the components be uncorrelated. This is why it is particularly 
well suited for decorrelating independent components from hyperspectral data. 
Rajpoot & Rajpoot [7] have shown ICA to perform well for extracting three 
independent components corresponding to three tissue types for segmentation 
of hyperspectral images of colon histology samples. ICA, however, provides no 
ranking of the resulting independent components, as does PCA.  There are a 
variety of methods for calculating the independent components (refer to [34]), 
which are generally very computationally intensive. ICA is a higher order method 



that seeks linear projections, not necessarily orthogonal to each other, as in the 
case of PCA.  

 

C. Manifold Learning 
 

Recently, non-linear dimensionality reduction methods have become popular in 
learning applications. These methods overcome a major limitation of 
summarized linear dimensionality reduction methods, which assume that 
geometrical structure of the high-dimensional feature space is linearized. In 
reality, high-dimensional feature spaces comprise of highly nonlinear structures 
and locality preserving dimensionality reduction methods are highly sought 
after. Manifold learning is a method of reducing a data set from M to N 
dimensions, where N < M while preserving inter- and intra-class relationships 
between the data. This is done by projecting the data into a low-dimensional 
feature space in such a way to preserve high dimensional object adjacency. Many 
manifold learning algorithms have been constructed over the years to deal with 
different types of data.  

Graph Embedding constructs a confusion matrix Y describing the similarity 
between any two images Cp and Cq with feature vectors Fp and Fq, respectively, 

where p, q  {1, 2, …., k} and k is the total number of images in the data set 

Y(p, q) = e−||Fp−Fq||   Rk×k             

           (5. 1) 

The embedding vector X is obtained from the maximization of the function: 

EY(X) = 



2XT (D -  Y)X 

XTDX
,      (5. 2)  

where D is the so-called degree matrix, with non-zero values being along the 
diagonal D(p, p) = ∑q Y(p, q) and  = k − 1. The k dimensional embedding space is 
defined by the eigenvectors corresponding to the smallest N eigenvalues of (D − 
Y)X = DX. The value of N is generally optimized by obtaining classification 
accuracies for N  {1, 2, · · · ,10} and selecting the N that provided the highest 
accuracy for each classification task. For image C, the feature vector F given as 

input to the Graph Embedding algorithm produces an N-dimensional eigenvector 
X(C) = [ej(C)| j  {1, 2, ….. ,N}], where ej(C) is the principal eigenvalue associated 
with C. 

In [22], a Graph Embedding algorithm employing the normalized cuts algorithm 
was used to reconstruct the underlying manifold on which different breast 
cancer grades were distributed. Figure 8 shows the embedding of different 
grades of breast cancer histopathology (low, intermediate, high) on the 
reconstructed manifold; low grades (yellow triangles), intermediate grades 
(green squares and blue circles), and high grades (red triangles). The manifold 



captures the biological transformation of the disease in its transition from low to 
high-grade cancer.  

 

Fig. 8: Low-dimensional embedding reveals innate structure in textural features of invasive breast 
cancers, with clear separation of high grade tumors from low and intermediate grade tumors as 

assessed by Nottingham score. Combined Nottingham score 5 (yellow triangle), 6 (green squares), 7 
(blue circles), and 8 (red triangles). The score of 8 corresponds to high grade tumors. (a) Low grade 

(Yellow triangles). (b) High grade (Red triangles). 
 

Manifold learning has also been shown to be useful for shape-based classification 
of prostate nuclei [35]. Rajpoot et al. [35] employ Diffusion Maps [36] in order to 
reduce the dimensionality of shape descriptors down to two dimensions and a 
fast classification algorithm is derived based on a simple thresholding of the 
diffusion coordinates. 
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