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Introduction 
 
Follicular lymphoma (FL) is one of the most common lymphoid malignancies in the 
western world. FL has a variable clinical course, and important clinical treatment 
decisions for FL patients are based on histological grading, which is done by 
manually counting the large malignant cells called centroblasts (CB) in ten standard 
microscopic high-power fields from H&E-stained tissue sections. This method is 
tedious and subjective; as a result, suffers from considerable inter- and intra-reader 
variability even when used by expert pathologists. Automatic, computer vision driven 
techniques will greatly increase the accuracy of FL diagnosis of a given sample, 
when monitored by an experienced medical practitioner. One of the most frequently 
applied strategies to design such a system, is to mimic the steps of a pathologist, i.e., 
extracting large malignant cells called centroblasts and counting them. For this task, 
segmentation of the image is crucial. This report‟s aim is two-fold:  

a) Looking at the state of the art of FL-image segmentation, 
b) Presenting a case study. 

 
 

1. State of the art 
 

1.2 Segmentation in histopathology images 
 

A large focus of pathological image analysis has been on the automated analysis of 
cytology imagery.  Since cytology imagery often results from the least invasive 
biopsies (e.g., the cervical Pap smear), they are some of the most commonly 
encountered imagery for both disease screening and biopsy purposes. Additionally, 
the characteristics of cytology imagery, namely the presence of isolated cells and cell 
clusters in the images and the absence of more complicated structures such as 
glands make it easier to analyze these specimens compared to histopathology. For 
example, the segmentation of individual cells or nuclei is a relatively easier process 
in such imagery since most of the cells are inherently separated from each other.   

Histopathology slides, on the other hand, provide a more comprehensive view of 

disease and its effect on tissues, since the preparation process preserves the 

underlying tissue architecture. As such, some disease characteristics, e.g., 

lymphocytic infiltration of cancer, may be deduced only from a histopathology image. 

Additionally, the diagnosis from a histopathology image remains the „gold standard‟ in 

diagnosing considerable number of diseases including almost all types of cancer [3]. 

The additional structure in these images, while providing a wealth of information, also 

presents a new set of challenges from an automated image analysis perspective. It is 

expected that the proper leverage of this spatial information will allow for more 

specific characterizations of the imagery from a diagnostic perspective. The analysis 

of histopathology imagery has generally followed directly from techniques used to 

analyze cytology imagery. In particular, certain characteristics of nuclei are hallmarks 

of cancerous conditions. Thus, quantitative metrics for cancerous nuclei were 

developed to appropriately encompass the general observations of the experienced 



 

pathologist, and were tested on cytology imagery. These same metrics can also be 

applied to histopathological imagery, provided histological structures such as cell 

nuclei, glands, and lymphocytes have been adequately segmented (a complication 

due to the complex structure of histopathological imagery). The analysis of the spatial 

structure of histopathology imagery can be traced back to the works of Wiend et al. 

[4], Bartels [5] and Hamilton [6] but has largely been overlooked perhaps due to the 

lack of computational resources and the relatively high cost of digital imaging 

equipment for pathology. However, spatial analysis of histopathology imagery has 

recently become the backbone of most automated histopathology image analysis 

techniques. Despite the progress made in this area thus far, this is still a large area of 

open research due to the variety of imaging methods and disease-specific 

characteristics.  

 

1.2 Automated detection and segmentation of 
histopathology images 

 

One of the pre-requisites to grading or diagnosis of disease in histopathology images 
is often the identification of certain histological structures such as lymphocytes, 
cancer nuclei, and glands. The presence, extent, size, shape and other 
morphological appearance of these structures are important indicators for presence 
or severity of disease. For instance, the size of the glands in prostate cancer tend to 
reduce with higher Gleason patterns [7]. Similarly the presence of a large number of 
lymphocytes in breast cancer histopathology is strongly suggestive of poor disease 
outcome and survival [8]. Consequently, a pre-requisite to identification and 
classification of disease is the ability to automatically identify these structures. These 
approaches can either be global, in which they attempt to simultaneously segment all 
the structures in the image scene or local approaches which target specific 
structures. 

 
Another motivation for detecting and segmenting histological structures has to do 
with the need for counting of objects, generally cells or cell nuclei. Cell counts can 
have diagnostic significance for some cancerous conditions.  Bibbo et al. [9] reported 
1.1%-4.7% error in cell counts compared to manual counts for Feulgen-stained 
prostate specimens.  Belien et al. [10] found 19-42% error in counting mitoses in 
Feulgen-stained breast tissue sections. In immunohistochemically stained bone 
marrow biopsies, Markiewicz et al. [11] reported 2.8-10.0% difference in counts 
between manual and automatic methods, while Kim et al. [12] found a correlation of 
0.98 between manual and automatic counts of immunostained slides of 
meningiomas.  Sont et al. [13] found a correlation of 0.98 between automated and 
semi-automated methods for inflammatory cell counts in immunostained bronchial 
tissue. 

 

1.2.1. Local, structural Segmentation: 

1.2.1.1 Nuclear Segmentation: Numerous works have been conducted [14-16] on 

segmentation of various  structures in breast histopathology images using 

methodologies  such as thresholding, fuzzy c-means clustering and adaptive 

thresholding [16]. Thresholding tends to work only on uniform images and does not 

produce consistent results if there is considerable variability within image sets. 

Watershed algorithms tend to pose the same problem [15] due to variability in image 



 

sets. Active contours are widely used in image segmentation; however, contours 

enclosing multiple overlapping objects pose a major limitation. In addition, inclusion 

of other irrelevant objects from the background further complicates the possibility of 

obtaining a viable segmentation.  

The pixel-level analysis of unstained prostate slides by Fourier transform infrared 

spectroscopy resulted in 94%-100% accuracy in the pixel-level classification of 10 

histologic classes as reported by Fernandez et al. in [17].  The pixel-level 

classification of nuclear material by Boucheron et al. [18] resulted in performances 

(equal tradeoff between detection and false alarm rates) of 88-90% for H&E stained 

breast tissue.  The use of automated methods for pixel-level analysis is perhaps 

more common for immunostained or fluorescently stained specimens. Singh et al. 

[19] reported 98% accuracy in the detection of positive and negative prostate nuclei 

immunostained for androgen receptor protein expression.  Analysis of cytokeratin-

stained lymph node sections yielded 95% detection of stained cells as reported by 

Weaver et al. in [20]. However, these studies focus only on finding individual nuclei.  

In H&E stained imagery of astrocytomas and bladder tissue, Glotsos et al. [21] 

reported that 94% of nuclei were correctly delineated.  Latson et al. found 25% poorly 

segmented nuclei, 4.5%-16.7% clumped nuclei, and 0.4%-1.5% missed nuclei in 

H&E stained breast biopsies.  Fluorescently stained imagery of cervical and prostate 

carcinomas allowed for 91%-96% accuracy in cell segmentation by Wahlby et al. 

[22], where the accuracy here is calculated based on manual cell counts (i.e., not 

taking into account the accuracy of the actual nuclear delineation). Korde et al. used 

image intensity thresholding to segment nuclei in the bladder and in skin tissue [23]. 

Gurcan et al. leveraged gray level morphology followed by hysteresis thresholding to 

achieve cell nuclei segmentation in digitized H&E stained slides [24, 25]. Other 

algorithms have been proposed using more complex techniques, such an active 

contour scheme for pap-stained cervical cell images by Bamford and Lovell [26] and 

a fuzzy logic engine proposed by Begelman, et al. [27] for prostate tissue that uses 

both color and shape based constraints. 

 

In [14, 28] nuclear segmentation from breast and prostate cancer histopathology was 

achieved by integrating a Bayesian classifier driven by image color and image texture 

and a shape-based template matching algorithm (Figure 1). Figure 1(a) shows a 

DCIS study with a number of nuclei closely packed together. The likelihood image 

representing the probability of each pixel corresponding to a nuclear region is shown 

in Figure 1(b). Note that several nuclei lie adjacent to each other and hence template 

matching is used to extricate the individual nuclei. Figure 1(c) shows the result of 

thresholding the Bayesian likelihood scene (95% confidence level). Template 

matching is then done at every location in 1(c). Only those image locations where 

correspondence between the binary segmentation (Figure 1(c)) and the template was 

found are shown as bright. The final nuclear boundary detection (green dots) is 

displayed in Figure 1(d). 

 

1.2.1.2. Gland segmentation: In a recently presented scheme for extracting glandular 
boundaries from histopathology scenes [14],  the algorithm consists of three distinct 
components: In the first stage a Bayesian classifier  is trained based on color and 
textural information to automatically identify nuclei, cytoplasm, and lumen regions in 
the scene. This information is used to train a supervised classifier to identify 
candidate nuclear, cytoplasmic, and lumen regions within the histological scene. 



 

Following low-level Bayesian classification, structural constraints are incorporated to 
constrain the segmentation by using image Information regarding the specific order 
of arrangement of glandular structures (central lumen, surrounding cytoplasm and 
nuclear periphery) in order to reduce number of false positive gland regions. Finally, 
a shape-based segmentation method in the form of level sets [29]  is initialized within 
candidate lumen regions as determined from the Bayesian classifier. Hence the level 
set surface evolution is controlled by the Bayesian probability scene derived via use 
of the low-level image information. The level set evolution is stopped at the interface 
between lumen and cytoplasm and thus a segmentation of the inner gland boundary 
is obtained. A second level set is then initialized within the cytoplasm area and used 
to capture the outer gland margin. Once the possible gland lumens are found, 
boundary segmentation is performed using level-sets. A boundary B evolving in time 
t and in the 2D space defined by the grid of pixels C is represented by the zero level 
set B = {(x, y)|f(t, x, y) = 0} of a level set function f, where x and y are 2D Cartesian 
coordinates of c Î C. The evolution of f is then described by a level-set formulation 
adopted from [29]: 
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t
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where the function F defines the speed of the evolution. The curve evolution is driven 

by the nuclei likelihood image. The initial contour 0 =  (0, x, y) is initialized 

automatically using the detected lumen area from the candidate gland regions. The 

curve is evolved outward from the detected lumen regions in the combined nuclei 

likelihood image to avoid noise and allow smoother evolution relative to the original 

image. The intensities of the nuclei likelihood image form the stopping gradient. The 

algorithm is run until the difference in the contours in two consecutive iterations is 

below an empirically determined threshold. During training, size distributions similar 

to those used to calculate object likelihood are created using the final contours. 

These nuclear boundary based distributions are used to remove regions that are too 

large to be true glands. Finally, the lumen and nuclear boundaries extracted from true 

gland regions are passed on to the next step for feature extraction. 

 
 

 

1.2.2 Global Scene Segmentation Approaches:  

In [31], a unified segmentation algorithm for subcellular compartmentalization was 
presented. Quantitation of biomarkers at sub-cellular resolution requires 
segmentation of sub-cellular compartments such as nuclei, membranes, and 
cytoplasm. While different segmentation algorithms can be used for each of the sub-
cellular compartments, an alternative is to use the same algorithm in different modes. 
The algorithm in [31] captured a set of bright pixels sharing a common shape 
distribution. The algorithm used a set of three features, one is the fluorescent 
emission intensity, and the other two are based on curvature descriptors that are 
computed from the eigenvalues of the Hessian matrix.  

For an image, ),( yxI , the eigenvalues (



1(x,y)  2(x,y)) of the Hessian matrix 

encode the curvature information of the image, and provide useful cues for detecting 
ridge-like membrane structures, or blob-like nuclei structures. However, the 
eigenvalues are dependent on image brightness. The following two curvature-based 
features are independent of image brightness: 
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and referred to as shape index, and normalized-curvature index, respectively. This is 
essentially the same as defining the eigenvalues in a polar coordinate system. This 
transformation also results in bounded features, 



3 /4 (x,y)  /4 , and 



0 (x,y)  /2.  

The estimation process starts with the expected distributions of the shape index for 
the structures to be segmented. For example, for bright membrane and vessel like 

structures the shape index is close to 2/ , because the smaller eigenvalue is 
negative and the larger eigenvalue approaches to zero. On the other hand, for the 
blob-like nuclei structures, the shape index is close to 



3 /4 , because both 
eigenvalues are negative and close in value. For both structures, positive values 
indicate a pixel being more like a background. These constraints are used to 
compute the initial foreground and background sets for membrane and nuclei 
structures. An initial segmentation based on the shape index and the normalized-
curvature index separates the image pixels into three subsets: background, 
foreground, and indeterminate. The indeterminate subset comprises all the pixels 
that are not included in the background or foreground subsets. From these subsets, 
the background and foreground intensity distributions, as well as the intensity log-
likelihood functions are estimated. The algorithm keeps iterating by using two out of 
the three features at a time to estimate the distribution of the feature that is left out.  
In the final step, these log-likelihood functions are combined to determine the overall 
likelihood function. A probability map that represents the probability of a pixel being a 
foreground is calculated.  

Cytoplasm can be detected either by using a specific cytoplasmic marker, or can be 
detected using computational methods using the fact that the cytoplasmic areas are 
between nuclear and membrane areas. For most cancer tissue types, it is very 
important to differentiate the epithelial tissue from the stromal and connective tissue, 
so that for IFC studies the expression levels of most markers in the epithelial regions 
can be quantified. Computational methods that use the high connectivity of 
membrane meshes can be used to differentiate the epithelial regions. For the sample 
images, any connected component larger than 800 pixels is accepted as a part of the 
epithelial mask. The nuclei set is then separated into epithelial nuclei and stromal 
nuclei using the epithelial mask.  

EMLDA is an image segmentation method, which uses the Fisher-Rao criterion as 
the kernel of the expectation maximization (EM) algorithm [30]. Typically, the EM-
algorithm is used to estimate the parameters of some parameterized distributions, 
such as the popular Gaussian mixture models, and assign labels to data in an 
iterative way. Instead, the EMLDA algorithm uses the Linear Discriminant Analysis 
(LDA), a supervised classification technique, as the kernel of EM-algorithm and 
iteratively group data points projected to a reduced dimensional feature space in 
such a way that the separability across all classes is maximized. In [13], authors 
successfully applied this approach in the context of histopathological image analysis 
to achieve the segmentation of digitized H&E stained whole-slide tissue sample. 

 

1.2 Segmentation of FL images 
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In [32], segmentation of follicles is achieved by thresholding the red channel from the 
RGB input image, using the mean brightness of the channel as the threshold. The 
density of “foreground” pixels of the resultant binary image is then measured by 
applying a transform to the image data, which‟s output measures the foreground 
density in four directions. 

In [33], a bi-modal Gaussian mixture model is assumed for the distribution of cellular 
and extracellular regions. The expectation maximization (EM) algorithm is then used 
for segmentation of the image. Bayes‟ rule is then applied to each pixel to find the 
posterior probability of belonging to either of the two classes. A cellular-likelihood 
image is found by using a sigmoid function, followed by a locally adaptive 
thresholding step, which‟s end result is a binary representation of the image that 
represents the final segmentation. To account for unwanted merging of individual 
cells by the segmentation a fast-radial symmetry transform is applied to the 
segmentation. When this segmentation scheme is used for centroblast detection, the 
average accuracy is about 80%. 

The approach discussed in [34], is semi-automated procedure, where seed points of 
the region of interest are provided by the user and are used as starting points for the 
segmentation. After this step, a filter is applied to the image in order to enhance the 
contours of the follicle regions. The actual segmentation is then solved by using 
active contours: starting with an initial curve and evolving it to the “correct” steady 
state, i.e. the object boundaries. [34] states: “The spatial coordinates (xs, ys) of the 
seed points are each used as the center of the circular curve expanded iteratively 
inside each follicular region. Applying active contours globally will lead to overlapping 
areas, which are then very difficult to extract and identify. The initial curve is circular, 
in general an appropriate estimate of the curvature of the follicle. The circle is then 
diffused iteratively inside the follicular region. The process converges when the fitting 
between the curve and the object is achieved. This is based on the minimization of 
energy between the object and the fitted curve.” As final steps, morphological filters 
and Fourier descriptors are applied to the binary image, in order to account for 
irregular contours. 
 
In [35], the authors are concentrating on finding feasible features on which to use k-
means and k-nearest-neighbor (KNN) classifiers for classification into two classes 
(nuclear or extra-cellular regions). Those features are basically local Fourier 
transform (LFT) features, but those are not computed over the original RGB 
colorspace, but rather a most discriminative color space (MDC), obtained by Fisher-
Rao discriminant analysis. The paper also introduces a computationally efficient way 
of computing the LFT features. K-means is used for getting a compact representation 
of the features, while KNN is used for final classification into the desired two classes. 
 

 

Figure 1: (a) Original DCIS image with corresponding (b) likelihood scene obtained via a 

Bayesian classifier driven by color and texture. (c) Thresholded version of likelihood scene 

(95% confidence). (d) The final nuclear segmentation obtained by integrating the Bayesian 

classifier with the template matching scheme. 



 

 

 

Figure 2: Results of the automatic segmentation algorithm (blue contours: lumen boundary, 

black contours: inner boundary of the nuclei of the epithelial cells surrounding the gland). 

Shown from left to right are example images of benign epithelium, intermediate-, and high-

grade cancer. 

 

 

2. A case study: Application and evaluation of 
different image segmentation techniques for 
follicular lymphoma image analysis. 

2.1 Introduction to medical image segmentation 
Segmentation i.e. partitioning of a medical image into multiple segments that are 
meaningful physical entities/objects is an important step in medical image. Since a 
large number of medical images with many details need to be processed, manual 
segmentation is very time consuming, results are not reproducible and may suffer 
from intra- and inter- observer variability [36]. Compared with standard algorithms 
used for image processing, the algorithms used for medical images need to satisfy 
additional constraints, exploit specific a-priori knowledge like properties of the 
imaging procedure or the properties of the organs  structures that are displayed on 
these images. Furthermore, often the influence of noise that is present in these 
images need to be taken into account and compensated.  

Methods for performing segmentations vary widely depending on the specific 
application, imaging modality, and other factors [37]. For example, the segmentation 
of brain tissue has different requirements from the segmentation of the liver. General 
imaging artifacts can also have significant consequences on the performance of 
segmentation algorithms. No single segmentation method yields acceptable results 
for every medical image. Some methods are more general and can be applied to a 
variety of data, however, methods that are specialized to particular applications can 
often achieve better performance by taking into account prior knowledge. As a result, 
the selection of an appropriate approach to a segmentation problem can therefore be 
a difficult dilemma. 

Many different algorithms have been proposed for computer-aided segmentation of 
medical images. Many authors classify the medical image segmentation algorithms 
into three broad categories: a)threshold-based techniques, clustering-based 



 

techniques and techniques based on deformable models. A more elaborate 
taxonomy from [38] is as follows:  

1. Thresholding 

2. Clustering methods 

3. Compression-based methods 

4. Histogram-based methods 

5. Edge detection 

6. Region-growing methods 

7. Split-and-merge methods 

8. Partial differential equation-based methods 

9. Parametric methods 

10. Level set methods 

11. Graph partitioning methods 

12. Watershed transformation 

13. Model based segmentation 

14. Multi-scale segmentation 

15. One-dimensional hierarchical signal segmentation 

16. Image segmentation and primal sketch 

17. Semi-automatic segmentation 

18. Neural networks segmentation 

The rest of this report will focus on the segmentation of microscopy images (and 
more specifically on the follicular lymphoma (FL) images) aiming to extract important 
features from which automatic detection of malignancy is possible. 

2.2 Segmentation of FL microscopy images  
The aim of this study is the development of advanced algorithms for segmentation of 
pathological follicular lymphoma microscopy images as a first step in developing 
systems to extract important features from which automatic detection and grading of 
malignancy is possible.  

Follicular Lymphoma (FL) is a group of malignancies of lymphocyte origin that arise 
from lymph nodes, spleen and bone marrow in the lymphatic system in most cases 
and it is the second most common non-Hodgkin‟s lymphoma. FL can be 
differentiated from all other subtypes of lymphoma by the presence of a follicular or 
nodular pattern of growth presented by follicle center B cells consisting of centrocytes 
and centroblasts. In practice, FL grading process often depends on the number of 
centroblasts counted within representative follicles. FL morphology-based histological 
grading of FL images obtained by microscopy and stained using is very important for 
the optimal choice of treatment. Tissues are stained using Immunohistochemistry 
(IHC) or Hematoxylin and Eosin (H&E) staining methods. The automation of this 
procedure has many advantages: the PC yields objective results, so malignancy can 
be detected easier, and results can be easily stored and used for future studies. 

A general image processing chain for IHC and H&E stained microscopic images 
usually consists of the following steps: 



 

1. A first optional (pre-processing) step image filtering and smoothing 

operations, such as morphological operators or median filters. 

2. Cells are segmented from their background (e.g. collagen). 

3. The individual cells are segmented within each cluster.  

4. As a post-processing step, segments containing multiple cells are identified 

and split based on the shape of their segment. 

In order to evaluate some state-of-the-art image segmentation approaches, an image 
processing of microscopic images from H&E-stained tissue sections is proposed 
(Figure 3), similar to the methodology followed in [46]. Specifically, the following 
steps are followed: 

1. PCA or a simple Colour to Greyscale transform is used to convert the 

colour image into a Greyscale image. 

2. A Gaussian smoothing filter is applied 

3. An Image segmentation approach to segment the foreground (cells) from 

background (collagen).  

4. Morphological operations and connected component labelling is used as 

post-processing 

5. A distance transformation followed by a watershed transformation is used 

to segment merged groups of cells into distinct cells, based on their 

boundary. 
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Figure 3: Segmentation of Microscopy Images for follicular lymphoma 



 

 

In the following, a number of image segmentation techniques are examined in 
detail, mainly as alternative approaches for Step 3 of the algorithm i.e. the 
segmentation of the image into two classes, i.e. foreground (cells) and 
background (collagen). In the following sections, seven state-of-the-art 
algorithms were applied for this task, namely: 
 
1. Adaptive thresholding (Otsu method) 

2. Adaptive thresholding (Kapur‟s energy maximization method) 

3. Iterative thresholding method (Shapiro method) 

4. ISODATA algorithm 

5. Fuzzy C-means (FCM) clustering 

6. Gaussian Mixture Models / EM algorithm 

7. Energy Minimization based on Graph Cuts 

 
Finally, results obtained after the procedure to split clustered group of cells 
(using a distance transform of the resulting binary image followed by a 
watershed algorithm) are also presented.  

 

2.3 Thresholding Techniques 
Thresholding is a useful and simple method for segmenting grey level images and is 
based on the fact that the foreground objects can be separated from the background 
based on their grey level values.  

The histogram of the image is used and a selection of one or multiple grey level 
values is made, to be used as threshold(s) between the pixel values of the 
foreground and the background.  

The initial grey level image can be converted to a binary image, so that the image 
segments which correspond to the foreground (background) are black (white), 
respectively. 

A significant problem for the task of separating pixels in two classes based only on 
the pixel‟s grey-level value is how to make an optimal choice for the corresponding 
threshold.  A simple selection may be the mean or median value of the histogram, 
but this is not always the best choice. To solve this problem, a number of optimal 
thresholding techniques were evaluated for the segmentation of medical images. In 
[39], 40 different adaptive thresholding techniques are exhaustively described, 
categorized and compared for the specific task of image thresholding. We selected 
two of the best performing techniques in this review as well as an additional 
technique described in [49], which is reported to be very efficient and has significant 
advantages. These techniques are presented below. 

2.3.1 Adaptive Thresholding method by Otsu 

 

One of the most important and most commonly used adaptive thresholding 
techniques is the Otsu method. It is based on the processing of the image histogram 
and the determination of the threshold based on the criterion of maximizing the 



 

separability between the foreground and background regions. For the conversion of a 
greyscale image into binary, a threshold value t needs to be specified, which can 

separate the greyscale values into two classes   , and    where    {0,1, 2,L, t} and 
   {t+1,t+2,L, L -1} , where L where L is the total number of grey levels in the image. 
Each class contains the pixels with values that are lower and higher respectively than 
the threshold t. 
If με ni are the number of pixels of the i-th grey level and n is the number of pixels in 
the image, the probability of the i-th grey level is defined as: 

   
  
 

 

Where    and    correspond to the foreground and background respectively. The 
probabilities of these two classes are called            are calculated as: 
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The average grey level values within each class are 
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An optimal thresholding value can be determined by maximizing the variance 
between the 2 classes 
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where   
  is the intra-class variance, defined as a weighted sum of variances of the 

two classes:  
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and   
   is the sum of squares of the standard deviation of the grey level values which 

is calculated by the formula: 
 

  
  ∑(  

   

   

  )  
  

 
where the average grey level value is: 
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The steps of the algorithm are as follows: 



 

 
1. Compute the histogram and the probability of each grey level 

2. Initialize values ωi(0) and μi(0) 

3. Step through all possible thresholds t=0,…,L-1 

a. Update values ωi and μi 
b. Compute intra-class variance 

       4.   Choose the threshold that maximizes intra-class variance in b. 
 

2.3.2 Kapur’s entropy-based method 
 

This method was proposed by Kapur et al. and is based on the maximization 
of the entropy of the image. Two probability distributions are used in this method: one 
for the foreground and one for the background regions. The optimal threshold value Τ 
is selected so as to maximize the total entropy of the image, i.e. the sum of the 
entropy Η(Β) of the background and Η(F) of the foreground. 

The probability distribution of the grey levels in the low grey value (dark, foreground) 
region is:  

  
  
  
 
  
  

  
   

  
  

  
    

And in the high grey value (white, background) region:  

  
    
    

 
    

  

    
   

    
  

    
    

 

where    is the probability of pixels with grey level less than or equal of the threshold  
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The entropy for the foreground pixels is calculated by the formula:  
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Where    is calculated by the formula:  
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Similarly, for the background region we can calculate entropy as:  

 ( )    (    )  
       
    

 

where      is computed by the formula: 
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And the total entropy of the image is: 
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The optimal threshold is the value where  ( ) is maximized and can be computed by 
the following steps: 

1. We compute the probabilities pi of the grey levels of the foreground (F) and 

background (B) classes for each possible threshold t 

2. We compute the logarithms of the values of the F and B class 

3. We compute the entropy of the F and B classes 

4. We compute the total entropy    
  ( )   of the image 

5. We determine the threshold t that maximizes the total entropy    
  ( )    

 

2.3.3 Iterative method by Shapiro 
 

A basic problem in thresholding is the selection of the threshold value. A 
simple method would use an average value (such as the mean or median value), 
since if the intensity of a pixel of the foreground is higher than the background, it also 
should also be higher than this average. However, the above assumption is not 
always true if the image is noisy. A more sophisticated approach might be to create a 
histogram of the image pixel intensities and use the valley point as the threshold, 
however this approach may not be very useful if the histogram does not have a 
clearly defined valley point. A relatively simple approach, which does not assume any 
a-priori knowledge about the image, and performs well under the presence of image 
noise is the following iterative method proposed in [49] by Shapiro: 
 
Algorithm steps 

1. A random threshold value is selected. 

2. The image is segmented into two sets corresponding to the foreground and 
background regions: 

G1 = {f(m,n):f(m,n)≤T} (foreground pixels) 

G2 = {f(m,n):f(m,n)>T} (background pixels) 

where f(m,n) is the pixel value of the m-th column and n-th row 

3. We compute the average value of each set  

m1=average (G1) 

m2= average (G2) 

4. A new threshold is defined as (m1+m2)/2  

5. Go back to step 2 and calculate new values until convergence is achieved 

 

This iterative algorithm is a special one-dimensional case of the k-means clustering 
algorithm, which has been proven to converge at a local minimum (so the actual 
results depend on the choice of the initial choice for the threshold). 



 

2.4 Clustering techniques 
Clustering techniques partition an image into K clusters. We will focus on the special 
case where two classes are defined (foreground and background) and we will study 
four approaches: 

1. ISODATA algorithm, which is a variation of the classic k-means 

clustering algorithm for varying number of classes. 

2. Fuzzy C-means (FCM) clustering, where each pixel is not assigned to a 

class deterministically, but using a fuzzy membership weight. 

3.  Gaussian mixture models and the EM algorithm, which is similar to K-

means clustering 

4. Energy minimization approaches based on Graph Cuts 

2.4.1 ISODATA algorithm 
The ISODATA algorithm [44] is a method of unsupervised classification, which is 
similar to the k-means algorithm with the main difference that the ISODATA algorithm 
allows for different number of clusters while the k-means assumes that the number of 
clusters is fixed a-priori. 

Specifically, starting from a random initialization, the ISODATA algorithm splits and 
merges clusters, according to the parameters set. In every iteration, the following 
three steps are performed: 

1) Cluster centers are randomly placed and pixels are assigned to the class for which 
the distance to class center is minimal. 

2) The standard deviation within each cluster, and the distance between cluster 
centers is calculated.  

3) Clusters are split if their standard deviation is greater than the user-defined 
threshold. On the other hand, clusters are merged if the distance between them is 
less than the user-defined threshold. 

Multiple iterations are performed until either one of the following criteria is satisfied: 

 i) the average inter-center distance falls below the user-defined threshold, 

 ii) the average change in the inter-center distance between iterations is less than a 

threshold, or 

 iii) the maximum number of iterations is reached 

2.4.2 Fuzzy C-means (FCM) clustering 
The Fuzzy C-means (FCM) clustering algorithm in which this segmentation method is 
based was proposed by J.C. Bezdec [45] and is a non-deterministic data clustering 
technique. Let   *              + be a dataset of pixels to segment into C 

classes         , i.e.                . FCM clustering method aims to minimize an 
objective function, namely: 
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where 



 

•    are the n pixels to be classified 

•   *           + are the c class centers  

•   ,   ]  is an c x n matrix, where     is the membership coefficient of  k-th pixel 
into class i. For the membership coefficient of each pixel, we normalize with respect 
to the sum of the class centers, therefore the elements     of matrix U satisfy the 
following relations: 
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• m is an exponential weight coefficient with m >1, m € R (usually m = 2 ). 

Therefore, before the start of the algorithm, the parameters c and m need to be 
specified. Then the centers of the c classes are initialized either to random points, or 

to randomly selected points from P. After the initialization of matrix  ( ) (initial state of 
matrix V ) the FCM algorithm consists of the following steps: 

1. Computation of the membership matrix   ( ) by the formula:  
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 where ι=1,……c  and k=1,… n. 

As seen in the above formula, the membership weight of a pixel in a class is 
inversely proportional to the power (m−1) of the distance of the pixel from the class 
center. 

 

2. Computation of the centers   
( )

 of the classes, with the formula 
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for i=1,……c 

3. Computation of the objective function   ( ) 

4. Testing of the termination condition. Specifically, if the difference between 

the objective function with respect to its value at the end of the previous 

iteration is smaller than a threshold value 



 

| ( )    (   )|    

or if the number of iterations α is equal to the maximum allowed number of 

iterations     , the algorithm is terminated. Otherwise, a new iteration occurs from 
Step 1, where a =a +1. 

The previous iterative procedure will lead to a local minimum of the objective 
function. However, the discovery of the global minimum generally requires an 

exhaustive search within the entire space of initial points   ( ). However, exhaustive 
search can be computationally inefficient for data with large variance within high 
dimensional spaces and large numbers of classes. In the case of FCM, the repetition 
of the procedure with different starting points each time, most of the times leads to 
the discovery of the global minimum of the objective function. 

Finally, if an application does not need information regarding to the level of 
participation of each data point (pixel) to all classes, but only about the class that it 
belongs to, then the point is simply assigned to the class that has the largest 
membership. 

 

2.4.3 Gaussian mixture models and the EM algorithm 
In this algorithm, which was also recently used in [46], the grey level intensity 
distribution of two target classes (e.g. cellular and extracellular components) is 
modelled using a Gaussian mixture model. The unknown mixture parameters are the 
mean and variance of the grey level intensities in each class as well as a mixture 
weight for each class. The mixture parameters can be estimated using the 
expectation-maximization (EM) algorithm [40]. The method starts with a random 
initialization and each iteration consists of two steps: In the expectation (E) step the 
likelihood with respect to the current estimates is computed and in the maximization 
(M) step the expected log-likelihood is maximized. 

 

2.4.4 Energy minimization approaches based on Graph 
Cuts 

Many problems in computer vision involve assigning a label (such as disparity in 
stereo, or a FG/BG label in image segmentation). A common constraint is that the 
label should vary smoothly everywhere, while preserving sharp discontinuities that 
may exist, e.g. at object boundaries [50].  A common and robust way of dealing with 
such problems is energy minimization.  

More specifically, the image segmentation problems can be formulated as a labelling 
problem, which can be effectively be described as an energy minimization problem. 
Energy typically consists of two terms: a data consistency term, that measures the 
consistency of pixel-to-label correspondence and a smoothness term which 
penalizes situations where neighbouring pixels have different labels. Specifically, the 
goal is to find a labelling l, which minimizes the following energy equation: 

E(l)= Edata(l)+Esmooth(l) 

where Edata measures the consistency of l with the observed data and Esmooth 
determines the extent to which f is piecewise smooth. 

Graph cut techniques have been found to be very efficient for finding good 
approximations of the global minimum in such energy minimization problems and 
they are fast enough to be practical. These techniques form a weighted graph to 



 

minimize the energy function, with two terminal vertices called the source and sink 
(Figure 4).  

 

Figure 4: Graph with two terminal nodes (source and sink). 

A graph cut is a set of edges that splits in two disjoint sets, each containing a 
terminal node. It can be seen that for a labelling problems with two-labels, each cut 
splits pixels and edges into two disjoint sets and thus corresponds to a valid solution 
of the labelling problem (Figure 5). In weighted graphs, where a weight is assigned to 
each edge, the cost of the cut is defined to be the sum of weights of the edges 
belonging to the cut. 

The minimum cut problem is to find the cut with the minimum cost, which minimizes 
the energy either globally or locally. The minimum cut, in turn, can be computed very 
efficiently by max flow algorithms. 

 

 
Figure 5: A graph cut solves the image segmentation problem by splitting pixels and edges into two disjoint 

sets 

 

The α-expansion and the α-β-swap algorithms, introduced by Y. Boykov et al [50], 
are two of the most efficient algorithms for minimizing discontinuity-preserving energy 
functions. These algorithms can change simultaneously the labels of arbitrarily large 
sets of pixels. This makes these algorithms computationally efficient when compared 
to standard energy optimization algorithms, like simulated annealing in which 
changes occur much more slowly.  

For instance in α-expansion algorithm, the algorithm in each iteration selects a label 
α, and then finds a lower-energy configuration within a single alpha-expansion move. 
If this expansion move has indeed lower energy than the current labelling, it becomes 
the current labelling for the next iteration. The algorithm terminates with a labelling 
that is a local minimum of the energy [51].  



 

A small introduction to graph theory and graph cuts can be found in the next section, 
followed by the description of segmentation approach that was used for the 
segmentation of microscope images. 

2.4.4.1 Introduction to Graph Theory 
Graph Theory is the study of Graphs. A Graph is a representation of a sequence of 
objects that are linked together with links. In other words, it‟s a diagram composed by 
nodes and links, or points and lines connecting these points. What is important in 
graphs is the points that are linked with each point. In contrast with other geometrical 
structures, their study does not include the type of the lines that act as links (e.g. if 
they are curves or straight lines), or the positions of the nodes in space. However, for 
visualization purposes, straight lines are usually used and neighbouring nodes are 
usually represented as points that are close to each other in space. Each link may or 
may not have a direction. If it does not have a direction, it is assumed to be 
bidirectional. Furthermore, a link can be characterized by its length. The length of the 
link is not necessarily equal to the length of the line that represents it. For example, a 
graph may represent a road network, in which the nodes are the cities. Elevation 
changes (mountains, hills, valleys, etc.) change the length of each link, without this 
being visualized in the map of the area. 

A graph consists of a finite (and possibly mutable) set of ordered pairs, called edges 
or arcs, of certain entities called nodes or vertices. As in mathematics, an edge (x,y) 
is said to point or go from x to y. The nodes may be part of the graph structure, or 
may be external entities represented by integer indices or references.  

 

A graph G=(V,E) consists of a set of nodes (or vertices)V and a set of edges E .Each 
edge is defined as an unordered pair of two nodes: 

 

 

 

 

Figure 6: A Graph example 

The edges may be directed (asymmetric) or undirected (symmetric). In the first case 
the graph is called ordered and in the second case they are called unordered. In 
mathematical notation, the definition of a graph is as follows: Graph G is an ordered 
pair G=<V(G), E(G)> where: 

V(G)={v1,v2...vn} is the set of vertices 

E(G)={e1,e2...em} is the set of edges 

 

In the case of an unordered graph, each edge is a set that consists of two members 
(the two vertices), which are called terminal vertices (nodes) and they are not 
necessarily different from each other. In the case of an ordered graph, each edge is 
an ordered pair that of two vertices.  

http://en.wikipedia.org/wiki/Set_%28computer_science%29
http://en.wikipedia.org/wiki/Reference_%28computer_science%29


 

 A weighted graph is a graph where a value (weight) has been assigned to each 
edge. 

A graph G=(V,E) can alternatively be represented by an |  |  |  | adjacency matrix 
with each element     (where j<|  |) is defined as: 

 

     {
                                 (   )  
                                         

 

 
 

 
Figure 7: Example of the adjaceny matrix of a graph 

2.4.4.2 Segmentation using Graph Cuts 
 
In the method that was implemented for the segmentation of microscopy images, the 
energy minimization approach by Y. Boykov et al [49] was used to find the solution of 
the two-label (foreground/background) segmentation problem. The main steps of the 
algorithm are the following: 

1. A k-means clustering algorithm was used to segment the colour image into 

two distinct sets.  

2. The covariance matrices are computed for each class and are used to find 

the Mahalanobis distance of each sample from the center of the class.  

3. The energy minimization problem is formulated to optimally re-assign labels 

to all pixels forcing also smoothness constraints. Specifically, a) the data term 

was chosen as minus the log likelihood of the pixel to belong to each class b) 

a fixed smoothing cost is applied to each two neighbouring pixels with 

dissimilar label and a spatially varying smoothness cost is assigned, that 

assigns a smaller cost to image edges (detected by filtering the image using a 

Sobel mask). 

4. The minimum cut is found by performing α-expansion iterations until 

convergence or until a maximum number of iterations has been reached. The 

α-β-swap algorithm can also be used as an alternative to the this technique. 

 



 

 

2.5 Splitting spatially clustered groups of cells using 
Distance transformation and the Watershed algorithm 

 
After the application of image segmentation techniques, the image can be 

converted to a binary image, where black pixels correspond to foreground (cells) and 
white pixels correspond to background (collagen). 

Morphological operations (e.g. dilation or erosion) followed by a connected 
component labelling procedure are performed to identify and label each individual 
cell.  
However, a common problem that can occur after the image segmentation is that 
spatially clustered cells that are touching or even overlapping each other may be 
merged together as one cell. For such cases, we chose to use a relatively simple 
technique to split them into individual cells based on the resulting binary image for 
these cells (binary mask) and the watershed algorithm. 
Specifically, we first apply a distance transformation within each of these large cell 
groups followed by a watershed algorithm, which can then split these groups of cells 
to identify each individual cell. Below, an introduction of the watershed algorithm for 
grey level images is described. 

2.5.1 Watershed algorithm 
The watershed algorithm is a morphological segmentation tool and belongs in 

the category of region-based image segmentation methods, which rely on the 
detection and merging of similar image pixels and regions, based on a specific 
feature. Beucher and Lantuejoul were the first to apply the Watershed transformation 
for image segmentation [47]. 

The watershed transformation represents the image as a surface where bright 
pixels (larger intensities) have higher values and dark pixels (lower intensities) have 
lower values. Image segmentation using the watershed transform performs better if 
we recognize the foreground objects and the background regions in the image. 

An image can be viewed as a topographical relief surface. The higher the 
intensity of a pixel, the higher is its height in this surface S. If we assume that a drop 
of water falls on a point p of surface S then this will flow downwards following a path 
on the slide until the point where it will be trapped in a local minimum Μ of the 
topographical relief. The set C(M) of the image pixels that have the property that 
when a drop of water falls on them will end to the same minimum Μ comprise a 
catchment basin of the local minimum Μ. The set of boundaries of all the different 
basins of the image comprises its Watershed. In other words, the lines of the 
watershed lie on the ridgelines of the image, which actually enclose different local 
minima (Watershed lines are always closed). 
The procedure with which the Watershed lines are identified is similar to a flooding of 
the relief. The relief, in which we have created holes in the points that correspond to 
the local minima, is gradually submerged in a basin of water. The water goes through 
the holes and floods the valleys. During this submerge, two or more floods that 
correspond to two or different local minima may be merged. To avoid this merge, a 
water barrier is built in at the points where the two floods would be merged. At the 
end of the procedure, i.e. when the entire image is submerged under the water, the 
only part that will be above the water level will be the water barriers, which define the 
watersheds and separate the basins, each containing only one local minimum.  
 
 



 

2.6 Experimental Results 
 
In 8(a), a 1201x901 H&E stained image is presented along with a manually marked 
ground truth mask 8(b). 
 

 

(a) 

 

(b) 

Figure 8: Original image and Ground truth mask 



 

The average results for this image using each of the 7 segmentation methods are 
presented in Table 1. We regard as “positive” the foreground and as “negative” the 
background area. The number of true positives, false positives, true negatives, false 
negatives and the total number of pixels is reported. 
Furthermore the precision, recall and F index are computed. Precision is defined as 

the number of true positives divided by the total number of positives (
  

     
), while 

recall is defined as the number of true positives divided by the total number of 

successful classifications (
  

     
). The F-index is defined as F=

                  

                
) and is 

a good criterion to measure the efficiency of the classification. 
  

Table 1: Evaluation of Image Segmentation Methods 

Segmentation 

Methods 
tp fp tn fn total precision recall F 

Otsu 259858 61972 669604 90667 1082101 0.807439 0.741339 0.772979 

Kapur 160514 16021 715555 190011 1082101 0.909247 0.457925 0.609092 

Iterative 263101 64197 667379 87424 1082101 0.803858 0.750591 0.776312 

Isodata 263101 64197 667379 87424 1082101 0.803858 0.750591 0.776312 

FCM Clustering 107046 7064 724512 243479 1082101 0.938095 0.305388 0.460775 

Gaussian 
Mixture Model 120637 26347 705229 229888 1082101 0.820749 0.344161 0.484964 

Graphcut 304266 108710 622866 46259 1082101 0.736764 0.868029 0.797028 

 

 
Figure 9: F-index for different segmentation methods 

Detailed results for each segmentation method are shown below: 

  



 

 

 

(a) Otsu 

 
(b) Kapur 



 

 
(c) Iterative 

 
(d) ISODATA 



 

 
(e) FCM Clustering 

 
(f) Gaussian Mixture Model 



 

 
(g) Graph Cuts 

Figure 10: Segmentation results produce by the seven segmentation techniques (a-g) 

From the results presented above (9), we can conclude that the segmentation based 
on graph cuts are the most efficient segmentation solution, while the Otsu, Iterative 
and ISODATA methods also provide very good segmentation results.  
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