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ABSTRACT
Some biomedical images show a large quantity of different
junctions and sharp corners. It is possible to classify several
types of biomedical images in a region covariance approach.
Cancer cell line images are divided into small blocks and
covariance matrices of image blocks are computed. Eigen-
values of the covariance matrices are used as classification
parameters in a Bayesian framework using the sparsity of
the parameters in a transform domain. The efficiency of the
proposed method over classification using standard Support
Vector Machines (SVM) is demonstrated on biomedical im-
age data.

1. INTRODUCTION

Automatic classification of biomedical images is an emerg-
ing field, despite the fact that there is a long history of im-
age recognition techniques [1]. Automatic classification of
carcinoma cells through morphological analysis will greatly
improve and speed up cancer research conducted using estab-
lished cancer cell lines as in vitro models. Distinct morpholo-
gies of different types and even sub-types of cancer cells re-
flect, at least in part, the underlying biochemical differences,
i.e., gene expression profiles. Moreover, the morphology of
cancer cells can infer invasivenes of tumor cell and hence the
metastatic capability. In addition, an automated morphologi-
cal classification of cancer cells will enable the correct detec-
tion and labelling of different cell lines. Cell lines are grown
in tissue culture, usually in a lab environment. They repre-
sent generations of a primary culture. Although cell lines are
being used widely as in vitro models in cancer research and
drug development, mislabeling cell lines or failure to recog-
nize any contamination may lead to misleading results. Short
tandem repeat (STR) analysis is being used as a standard for
the authentication of human cell lines. However, automated
analysis will provide the scientists a fast and easy-to-use tool
that they can use in their own laboratories to verify their cell
lines.

In this paper, five classes of biomedical images are classi-
fied, namely BT-20, Cama-1, Focus, Huh7 and HepG2 which
are all images of cancer cell lines. This is achieved by using
an image descriptor based on covariance matrices that are a
generalisation of the well-known Harris corner detector to
classify images of cells. This approach is used due to the
high percentage of junctions in these types of images. The
descriptors are computed for small non-overlapping blocks
of the images and fed to a Bayesian classification framework
that exploits the sparsity of the descriptor’s probability den-

sity functions (PDFs) in a transform domain. In the next
section the feature extraction method is described. In Sec-
tion 2, the proposed Discrete Cosine Transform (DCT) based
Bayesian classification framework is described. Experimen-
tal results are presented in Section 4.

2. FEATURE EXTRACTION

Some biomedical images usually show a lot of relatively
sharp junctions, as shown in Figures 2. They can be classi-
fied according to their edge and corner contents. Therefore,
it is wise to select corner detector type features for this kind
of biomedical images.

The Harris corner detector [2] is widely acknowledged as
a classic feature detection method. It can detect and differen-
tiate between corners and edges by examining the principal
curvatures in x- and y-direction by evaluating the error be-
tween an image region and a shifted version of it, as follows:

c(xi,y j) = ∑
W

(
I(xi,y j)− I(xi +∆x,y j +∆y)

)2
, (1)

where W is the window region, I represents the intensity
image and (∆x,∆y) denotes the shift in x- and y-direction.
Equation 1 can be approximated by

c(xi,y j) = (∆x,∆y) ·C(xi,y j) · (∆x,∆y)T , (2)

where C(xi,y j) is a 2-by-2 symmetric autocorrelation matrix
containing the averaged derivatives in x- and y-directions:

C(xi,y j) = ∑
W
[Ix(xi,y j), Iy(xi,y j)] · [Ix(xi,y j), Iy(xi,y j)]

T

(3)
where Ix(xi,y j) denotes the derivative of I at (xi,y j) in x-
direction. If both eigenvalues of the autocorrelation matrix
are high, a corner exists in window W . If only one of the
eigenvalues is high and the other is low, an edge is detected.
If both eigenvalues are low, the region is found to be flat. The
Harris corner detector is largely invariant to rotation, scal-
ing, illumination differences and noise. Similar strategies are
used in [3], [4]. However, it is experimentally observed that
Harris corner detector does not provide good classification
results as will be discussed in Section 4.

For this reason the feature vector is augmented to include
image intensity and diagonal derivatives as follows:

v(xi,y j) = [I(xi,y j), Ix(xi,y j), Iy(xi,y j), Ix+y(xi,y j), Ix−y(xi,yi)], (4)
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where the last two entries denote derivatives along the axes
at angles of π

4 and 3π
4 with the x-axis, respectively. By in-

cluding diagonal derivatives in the feature vector, we can dis-
tinguish various types of corners and junctions. In a digital
implementation these derivatives can easily be calculated by
applying 2-dimensional filters to the image window W . The
resulting covariance matrix for a discrete 2-dimensional im-
age region W of size M-by-N, can then be written as

C(xi,y j) =
1

MN

M

∑
i=1

N

∑
j=1

(
v(xi,y j)−µ

)T
·
(
v(xi,y j)−µ

)
,

(5)
where µ is the mean vector of all feature vectors in the dis-
crete image region.

Related work include [5], [6] in which a region descrip-
tor based on covariance matrices was used for moving object
tracking in video. This framework also uses feature vectors
of pixels and constructs a covariance matrix. The feature
vector may contain the coordinates of a pixel, its R-, G- and
B-Values, derivatives in x- and y-direction or any other prop-
erty of a given pixel. The goal of this article is to construct
descriptors for cell images, therefore it is sufficient to include
only the directional derivatives in the covariance matrix.

3. CLASSIFICATION ALGORITHM

In [7] the differences between discriminative, i.e. paramet-
ric, and generative modelling approaches of posterior distri-
butions for image classification and object recognition are
explored. It is found that generative approaches, while com-
putationaly more costy, yield better performance than their
discriminative counterparts in general. However, it is usually
not straightforward to model a posterior distribution given
a set of data. Computing a histogram from the data as an
estimate for the posterior distribution may not work due to
the limited size of the training data and the resultant unoc-
cupied bins in the estimate of the distribution. Unlike [7]
no artificial probability models are assumed in order to esti-
mate a Bayesian model from the image data. In this paper,
a sparse representation in the transform domain of the fea-
ture parameter data is assumed. This allows us to fill the
missing holes in the distribution in a smooth manner. In the
well-known Bayesian estimation problem, the posterior dis-
tribution is given by:

p(l|v) = p(v|l)p(l)
∑i p(v|i)p(i)

, (6)

where l denotes the class label and v denotes some feature
vector of the image data. In this case, the random vector
v represents the eigenvalues of the region covariance matrix
and all classes are equally likely. If prior distributions are
known, one needs to compute the likelihood function in order
to find the desired posterior distribution. Therefore, the rest
of this section will focus on the likelihood function.

As discussed above, an estimate for the likelihood in Eq.
6 can be obtained easily by computing a histogram from the
training data set. However, since a specific v from the test
set may not be included in the training set, calculating the
likelihood and therefore the posterior distribution for the fea-
ture vector in question may not be possible using the his-
togram only. The proposed method uses sparse representa-
tions of the data histograms in DCT domain to compute an

estimate of the full likelihood function. Note that no form of
the distribution, e.g. Gaussian, of the data is assumed before-
hand. The only assumption is that the conditional PDF have
a sparse representation in either Fourier, DCT or wavelet do-
main. Using the sparsity of a signal in a transform domain
has been widely used in signal processing in digital wave-
form coding including JPEG and MPEG family of standards.
In recent years, the concept of sparsity is also used to es-
timate a given signal from random measurements in com-
pressive sensing (CS) [8]. The proposed method uses spar-
sity in DCT domain to estimate the conditional PDFs from
the histogram of image features. Intuitively, one may ex-
pect likelihood functions of continuous random variables ob-
tained from natural images as smooth functions, i.e., their
representation in Fourier, DCT or wavelet domain is some-
what sparse, because natural signals and images are relatively
smooth and compressible by DCT based algorithms such as
JPEG. In the proposed method, the histogram h(v|l) of each
image class is computed from the training set. Then, h(v|l)
is transformed into Fourier space or one of its derivatives.
In the experiments carried out for this study, the discrete co-
sine transform (DCT) which is the most widely used image
transformation method is used:

g(Y|l) = DCT{h(v|l)} (7)

where g(Y|l) represents the DCT domain coefficient vector
(array in multidimensional case). Size of the DCT should be
selected larger than the bins of the histogram. The DCT has
fast (O(N · logN)) implementations.

Using the sparsity assumption, only the highest q percent
of DCT domain coefficients are retained and the remaining
DCT coefficients are set to zero. All band-limited signals
are of infinite extent in the frequency domain, therefore all
the gaps are filled when the reduced ĝ(Y|l) is inverse trans-
formed to its original domain. As in natural images most of
the highest q percent of DCT coefficients turn out to be in
the low-pass band corresponding to low indexed DCT coef-
ficients. This q percent filtered DCT coefficient set is inverse
transformed to its original domain and normalized. The re-
sultant p̂(v|l) is an estimate of the unknown likelihood of the
data. The estimated p̂(v|l) turns out to be smooth functions
because of the low-pass ”filtering” in the DCT domain. Af-
ter this estimation step, the posterior probability distribution
on the left hand side of Eq. 6 can be readily computed. An
example for this method is given in Figure 1. There is the
possibility that p̂(v|l) may contain negative values. One can
then proceed to use an iterative method by setting the nega-
tive values to zero and transforming it again to DCT domain,
this time retaining the q+ #(Iterations) highest DCT coef-
ficents, followed by another inverse DCT, until no negative
coefficients in the resultant p̂(v|l) are present. This iterative
method will eventually converge, since it is a projection onto
a convex set (POCS) [9].

In the classification step, one image is chosen as test im-
age for each class, all other images of the respective class are
assigned as training images, leading to L different classifiers,
where L denotes the number of classes. Each test image is
fed in a block-by-block manner to one of the L classifiers that
were computed from the training set, in order to find a pos-
terior probability for each class. For each feature a seperate
posterior PDF is computed and results are averaged. Note
that by computing seperate PDFs we are not assuming inde-
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(a) Histogram of data

(b) DCT of (a)

(c) Reduced DCT of (a)

(d) Inverse DCT of (c)

Fig. 1. Depiction of the algorithm described in Section 3.
The histogram in (a) which has empty bins is transformed
into (b) using DCT. In (c) the values of the high frequency
coefficients are set to zero. The inverse DCT of (c) yields an
estimate for the likelihood function that has only non-empty
bins, see (d). Note that in (d), bins may have very small
likelihood values but larger than zero.

(a) BT-20 class

(b) Cama-1 class

(c) Focus class

(d) HepG2 class class

(e) huh7 class class

Fig. 2. Examples of the image classes used in this study.
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pendence of the eigenvalues, as these are computed from a
covariance matrix. The block is assigned to the class that
yields the largest posterior probability. After all blocks have
been fed to the classification process, a final decision for the
image is made according to the highest number of class la-
bels for the blocks. However, only when at least 50% of all
blocks in an image are assigned to one class, is the image
classification counted as a success. Although transform do-
main methods (e.g. moment generating function) are used in
statistics we have not seen any application of transform do-
main methods in PDF estimation using sparsity in the trans-
form domain to the best of our knowledge.

4. EXPERIMENTAL RESULTS

Two breast and three hepatocellular human carcinoma cell
lines are used for the demonstration of the automatic mor-
phological profiling of cancer cells. BT-20 is a basal breast
cancer cell line (Basal A). It is characterized as an ER-
negative invasive ductal carcinoma. Cama-1 is a lumi-
nal breast cancer cell line. It is characterized as an ER-
positive adenocarcinoma an has been shown to form grape-
like colonies with poor cell-to-cell contacts [10]. Luminal A
type tumors reflect a good prognostic group, while the Lumi-
nal B and basal tumors resemble a bad prognostic group. Fo-
cus is a poorly-differentiated mesenchymal-like hepatocellu-
lar carcinoma (HCC) cell line. It lacks hepatocyte lineage
and epithelial cell markers and instead expresses mesenchy-
mal markers. It is high is highly motile and invasive. HCC
cell lines have been classified as well- or poor-differentiated
according to the indicated markers and migratory features
[11], [12]. Huh7 and HepG2 are well-differentiated HCC
cell lines with epithelial morphology, displaying low motility
and invasiveness. Although they are all adherent cells grow-
ing as monolayers, HepG2 cells grow in small aggregates,
while Huh7 and Focus tend to cover the entire environment.
Some example images of these classes are shown in Figure
2.

The dataset consists of 5 classes with 10 images per class,
all taken at 20x magnification. The image size is 4140-by-
3096 pixels. Images are divided into small blocks of size
15-by-15 and covariance matrices are computed.

Four experiments are carried out. The first experiment is
testing the accuracy of the Bayesian classifier described in
Section 3 using the eigenvalues from region covariance ma-
trices as features. Results for ten instances can be seen in Ta-
ble 1. In this experiment the amount of DCT coefficients that
are not set to zero as described in Section 3 is 10%, the his-
tograms for each of the eigenvalues is computed over 32768
bins.

The second experiment is very similar to the first exper-
iment, only that the features here are the two eigenvalues
computed from the Harris corner detector. The classification
procedure is exactly as described in experiment 1, however.
Results can be seen in Table 2.

In the third experiment the images are clasified using a
standard support vector machine (SVM). For each block, it
is determined if the current block is containing background
or not. This decision is based on an experimentally standard
deviation of the luminance of the given block. If the standard
deviation is high, it is regarded as foreground. For the fore-
ground blocks the region covariance matrix and its eigenval-
ues are computed. The eigenvalues of the foreground blocks

are then put into a multi-class SVM [13], [14] for classifi-
cation. The LIBSVM [15] software package is used with a
Radial Basis Function (RBF) kernel. Results can be seen in
Table 3. It is clear from this table that the SVM approach
only yields feasible results for two out of five classes.

The fourth experiment is similar to the third, only that
this time around eigenvalues from the Harris corner detector
are used in the SVM classifier. Results for the fourth ex-
periment can be seen in Table 4, confirming the trend of the
other experiemnts that Harris corner features are not feasible
for the task at hand.

Test Positives Positives Positives Positives Positives
Index for BT-1 for Cama-1 for Focus for HepG2 for huh7
1 88.90 83.41 79.24 63.74 63.42
2 84.25 80.08 86.33 70.48 70.04
3 83.05 47.63 90.44 66.63 45.14
4 88.80 78.25 86.34 76.74 54.83
5 81.88 78.46 81.39 42.20 73.74
6 88.61 62.67 89.57 26.20 53.63
7 90.19 60.61 82.79 56.41 68.96
8 79.71 76.01 81.42 68.18 63.88
9 85.68 80.59 89.21 39.05 53.68
10 84.13 77.46 80.93 77.98 58.24

Table 1. Image block classification accuracies (in %)
of eigenvalues from region covariance matrices for the
Bayesian classifier. The index of the five test images per class
is given in the first column. Block accuracies that led to in-
correct classification are printed in bold face. Average image
block accuracies are 72.42%, image recognition rate is 90%.

Test Positives Positives Positives Positives Positives
Index for BT-1 for Cama-1 for Focus for HepG2 for huh7
1 20.48 3.55 20.19 2.87 42.19
2 5.55 47.33 23.85 18.72 7.06
3 3.81 16.41 14.35 15.98 42.93
4 4.44 78.62 38.00 4.35 14.59
5 14.81 62.46 23.41 5.92 15.87
6 2.01 47.94 8.77 25.61 32.26
7 24.99 15.59 16.71 5.04 49.09
8 8.65 12.91 16.08 20.58 43.61
9 30.65 25.36 2.11 4.99 36.43
10 14.06 15.21 13.33 2.52 39.18

Table 2. Image block classification accuracies (in %) of
eigenvalues from Harris corner detector for the Bayesian
classifier. The index of the five test images per class is given
in the first column. Block accuracies that led to incorrect
classification are printed in bold face. Average image block
accuracies are 21.23%, image recognition rate is 4%.

5. CONCLUSION

It is demonstrated that the region covariance matrix can be
used for automatic classification of certain cancer cell line
images in a Bayesian classification framework. The two
main findings of this paper are the following:
1. For the application at hand, the classification method

developed in this paper yields better results than the
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Test Positives Positives Positives Positives Positives
Index for BT-1 for Cama-1 for Focus for HepG2 for huh7
1 27.62 58.72 87.95 14.97 35.18
2 22.48 61.32 86.30 16.00 32.20
3 22.12 61.52 62.22 13.38 37.97
4 22.65 61.20 60.82 14.75 36.13
5 18.88 58.92 58.38 12.20 33.17
6 19.50 61.45 50.28 11.98 35.25
7 25.72 64.86 57.47 15.42 34.20
8 20.28 66.82 59.10 11.87 37.35
9 27.58 55.55 49.72 12.95 38.30
10 20.95 62.72 44.63 13.22 39.47

Table 3. Image block classification accuracies (in %) of
eigenvalues from region covariance for the SVM classifier.
The index of the five test images per class is given in the first
column. Block accuracies that led to incorrect classification
are printed in bold face. Average image block accuracies are
39.07%, image recognition rate is 36%.

Test Positives Positives Positives Positives Positives
Index for BT-1 for Cama-1 for Focus for HepG2 for huh7
1 00.00 47.47 90.55 00.00 44.40
2 00.00 42.33 88.87 00.00 47.53
3 00.00 48.18 72.90 00.00 49.03
4 00.00 47.57 71.10 00.00 46.42
5 00.00 48.33 67.97 00.00 50.27
6 00.00 46.33 60.63 00.00 42.88
7 00.00 50.18 61.03 00.00 42.17
8 00.00 51.27 64.85 00.00 44.48
9 00.00 39.90 54.47 00.00 48.75
10 00.00 45.25 51.58 00.00 48.62

Table 4. Image block classification accuracies (in %) of
eigenvalues from Harris corner detector for the SVM clas-
sifier. The index of the five test images per class is given
in the first column. Block accuracies that led to incorrect
classification are printed in bold face. Average image block
accuracies are 32.33%, image recognition rate is 26%.

straightforward application of the popular SVM classi-
fier.

2. Eigenvalues from region covariance matrices are better
suited descriptors for the image classes under investiga-
tion than the Harris corner detector.

Future work may include comparisons of the eigenvalues of
region covariance matrices with SIFT features. The proposed
Bayesian approach is original because parts of the PDFs of
the image feature data are estimated in transform domain us-
ing the well-known DCT.
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