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Follicular lymphoma (FL) is one of the most common types of non-Hodgkin’s Imphomas in the world.
Diagnosis of FL is based on morphological and immunohistochemical characteristics found on tissue
sections. Our project’s aim is to develop computer-aided analysis tools on virtual slide images (VSI) of
lymphoid tissues with the purpose of improving the FL grading performed in malignant follicles. In this
paper, we focus on the first step of our work, an automated system for detecting follicles in VSI of lymphoid
tissues. To mimic the human expert process, the system works on low-resolution CD20 images and maps
the follicle boundaries on high-resolution H&E images.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Follicular lymphoma (FL) is a group of malignancies of lympho-
cyte origin that typically arise from the lymph nodes, spleen and
bone marrow in the lymphatic system. FL images are characterized
by follicular or nodular patterns of growth presented by follicle
center B-cells consisting of centrocytes and centroblasts. FL repre-
sents 22% of non-Hodgkins lymphomas in the world and accounts
for 35% of all adult B-cell lymphomas and 70% of low-grade lym-
phomas in US clinical trials. The grading system of the World Health
Organization (WHO) divides FL into three histological grades based
on the average number of centroblasts (CB) in ten random standard
microscopic high power fields (HPF)[1] representing malignant fol-
licles in H&E stained tissue. Grade I has up to 5 CBs/HPF, grade Il
has 6-15 CBs/HPF and grade IIl has more than 15 CBs/HPF. While
grades I and II are considered indolent, with long average survival
rates and no needs of chemotherapy, grade IIl is an aggressive dis-
ease; it is rapidly fatal if not immediately treated with aggressive
chemotherapy. These differences underline the importance for pre-
cisely measuring an accurate histological FL grading to guide crucial
clinical decisions of timing and type of chemotherapy. However, in
amulti-site study, the inter- and intra-rater variability in FL grading
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by experts has been shown to lie between 61% and 73% [2]. Such a
large disparity underscores the need for additional diagnostic tools
and computer-based image analysis systems may be such tools.

In conjunction with the aims of the global MIRACLE project
(Microscopic Image Processing, Analysis, Classification and Model-
ing Environment, FP7-PEOPLE-2009-IRSES Marie Curie PIRSES-GA-
2009-247091: http://miracle.ee.bilkent.edu.tr/), the BMI Depart-
ment at the Ohio State University and four European laboratories
are currently developing a complete series of linked tools dedicated
to FL grading. Aiding this work is the acceptance and application of
computer-aided diagnosis systems (CADS) in medical labs due to
recentadvancements inimaging technologies. We have been devel-
oping tools for computer-aided prognosis of neuroblastoma [3,4]
and grading of follicular lymphoma [5-7] with promising results.
The work described in [7] elaborates some tools for detecting fol-
licles using H&E and IHC stained tissues. Based on these results,
we have developed models to describe tissue histology for classi-
fication of FL grades [6]. The previous research in this area focused
on morphometric analysis of FL images [8] by comparing diagnosis
based on three different stains while [9] developed classifiers for
sub typing FL. Recently, Neuman et al. [10] developed image anal-
ysis tools for counting nuclei in IHC stained FL tissue images using
color features and watershed segmentation.

Both pathologists’ and computerized analysis of an FL case starts
with identification of follicle regions from H&E-stained images. For
the human analysis, ten representative HPFs need to be selected.
These HPFs are generally selected to coincide with follicles, as the
intra-follicular regions do not contain CB cells. Similarly, the com-
puter analysis, although not limited to 10 HPFs, needs to identify all
follicular regions because further analysis will be carried out only in
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those areas. However, in many cases, the identification of follicles
on an H&E slide is challenging because the boundaries of the folli-
cles are not immediately visible. Pathologists often select areas of
the slide where these boundaries are more visible or review IHC-
stained adjacent slides, where the follicles are better visible. Our
computer-aided approach mimics pathologists’ use of IHC infor-
mation in a systematic way. We first detect the follicles in IHC
slides and then use this information to detect the corresponding
follicles in adjacent H&E slides. This process involves both follicle
segmentation as well as the registration of adjacent slides.

In this paper, we describe a new method for automatically
detecting follicle areas in IHC slides based on our previous work
[7], in which we followed a feature based clustering approach.
Each pixel is represented by a feature vector of color and tex-
ture information. In order to capture the color information, the
RGB images are converted to the HSV (hue-saturation-value) color
space. The S (saturation) channel, which describes how pure the
hue is with respect to the white reference, is used as the color infor-
mation. The texture information is quantified by the homogeneity
of the 9 x 9 neighborhood of each pixel using the co-occurrence
matrix approach. The resulting feature vectors are classified using
a k-means classifier with k=4 classes: (1) follicles (B-cells), (2)
intra-follicular area (T-cells), (3) mixture (T- and B-cells) and
(4) background. The resulting follicle candidate images are post-
processed morphologically and then ellipses are fitted to the binary
follicle candidates. However, fitting an ellipse onto a follicle is not
always optimal since their shapes can significantly vary depending
on tissue sections. We attempt here to improve the segmentation
quality of follicular areas by providing reliable and accurate follicle
boundaries while removing the objects that are suspected to be of
poor quality. We use serial sections respectively stained according
to the IHC (CD20) and H&E protocols. IHC images are highly con-
trasted, which is well suited for pre-segmenting follicle areas. The
resulting binary masks are then mapped on H&E images after a reg-
istration procedure, conducted according to the thin plate spline
algorithm as explained in [11,12]. We utilized a novel approach
to reduce the complications involved in the manual preparation
of slides, namely tearing and folds that will appear on both IHC
and H&E images. Our approach, based on inpainting [13], reduced
the influence of the manual preparation during the segmentation
process. Inpainting is a technique for reconstructing lost or deteri-
orated parts of images and videos either by filling in small image
gaps, or generating large image regions by synthesizing texture. In
our case, the small image gaps produced by the tears and folds are
reduced by this technique.

The paper is organized as follows. In Section 2, we present
images and software used to illustrate our strategy and we focus
on the segmentation process yielding to binary masks of follicu-
lar areas. Section 3 presents a visual display of various results and
details the proposed method according to an expert’s ground truth.
Section 4 is the place where points to be improved are discussed
before finally concluding in Section 5. The general flowchart of our
method is presented in Fig. 1. The red boxes correspond to the cur-
rent work; the blue final box is another process out of the scope of
this paper.

2. Materials and methods
2.1. Virtual slides

In order to achieve the overall follicle segmentation, tissues are
stained according to two protocols. The first one is an immuno-
histochemical staining (IHC) revealing the surface of all mature
B-cells (CD20). The second one is the classical Hematoxylin and
Eosin staining (H&E) where Hematoxylin (blue) is linked to nuclear

areas whereas Eosin (red) is linked to stroma and cytoplasm
parts. CD20 images show a real good contrast and are then well
suited for pre-segmenting follicles, even at low resolution. But
since the FL grading is only conducted in H&E images, an inter-
mediate registration step is necessary to be able to map the
pre-defined follicle boundaries found in CD20 images onto H&E
images.

Both CD20 and H&E images were digitized with an Ape-
rio ScanScope XT (Aperio, San Diego, CA) at 40x magnification,
before being sub-sampled by a factor of 64 (corresponding to
0.625x). Choosing such a large factor is justified in two ways. At
first, hematologists are able to mark follicle boundaries on CD20
images. Secondly, this allows us to load the whole image in the
RAM of a classical personal computer, thus avoiding the border
effects encountered with tiled images. Later, the object bound-
aries will be over-sampled to fit in the original high-resolution
images. At 40x, the resolution is 0.25 wm/pixel and a high power
field (HPF) represents 0.18 mm?2 (analogous to a rectangle of
size 2168 x 1353 px2). At 0.625x, resolution is 16 wm/pixel so
a HPF may be represented by a rectangle of size 34 x 21 px2.
To illustrate the proof of concept of our approach, six pairs of
CD20-H&E images have been acquired, some of them revealing
a non-uniform staining of the slides. Fig. 2 shows an example
of such a pair. It can be seen that at low resolution, the folli-
cle regions are clearly more visible on CD20 images (Fig. 2(a))
than on H&E images (Fig. 2(b)). The average size of 40x images
is 64,300 x 68,300 (12.3 GB if uncompressed) and 1005 x 1067 at
0.625x (3 MB).

2.2. Software and implementation details

Each step in the flowchart shown in Fig. 1 corresponds to a
script implemented in MATLAB® (The MathWorks Inc., Natick, MA)
and makes use of its ‘Image Processing Toolbox'. The algorithms,
developed on a classical PC under Windows, are not optimized
for speed. The execution times (around 40 min per image) are
reduced substantially when the algorithms are implemented as
parallelized C++ code, which is the subject of another study. For
the registration step, an extra-package also written in MATLAB is
used [11]. The primary sub-sampling step is achieved by calling
the DALTON tool, an executable code written in pure C language
by our team. When slides are initially prepared and stained, and
due to the manual operations involved, some tears and folds
usually appear both on IHC and H&E images. The sizes of the
tears/folds are quite large compared to follicles and a ‘line’ crosses
many of them. Instead of avoiding processing these follicles, espe-
cially in CD20 images, we have chosen to reduce their influence
by applying an image restoration process based on inpainting
[13].

2.3. Sub-sampling and background segmentation

FL images are characterized by follicular or nodular patterns of
growth presented by follicle center B-cells consisting of centro-
cytes and centroblasts. In IHC images, especially for the CD10 and
CD20 staining, these follicles appear as separated ‘convex’ regions
in which cellular density is higher than in the inter-follicular area.
The proposed algorithm uses low-resolution CD20 images to first
pre-determine the follicle boundaries before mapping them on H&E
images. For sub-sampling CD20 and H&E images, the DALTON tool
developed by the French partner in the MIRACLE project has been
used. This tool makes use of wavelet transforms for interpolating
pixels and is fully parallelized.

For each pair of CD20-H&E, the background segmentation is
classically achieved thanks to a logical AND on their thresholded
RGB components followed by hole filling and an area opening [14]
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Fig. 1. Flowchart of the process.

of size 5000 (allowing to remove tissue smaller than 1.28 mm?, that
is about 7 HPF). The two binary masks obtained will then be used
in the registration step.

2.4. Fold and tear removal
Folds and/or tears (F/T) are visible on all the 12 images we used

for this study; they are inherent artifacts of slide preparation. Folds
appear as quite large strong black lines more or less regular whereas

tears correspond to thinner white lines, with a structure sometimes
similar to branches. In some cases, both CD20 and H&E images in a
pair have a F/T at the same location (as the serially sections are cut).
In other cases, only one image in a pair has a F|T (as the tissue is
laid on the slide). Even though the hematologist will not detect any
centroblast in such artifacts on H&E images, the actual presence of
aF/Tin CD20 images should not be an obstacle for detecting follicle
boundaries. But their influence has to be reduced since algorithms
based on object borders could be disrupted by the high contrast
they involve.

Fig. 2. (a) CD20 stained tissue. (b) H&E stained tissue.
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Fig. 3. (a) Folds and tears on a CD20 image. (b) Binary mask obtained by skeletonization. (c) Reconstruction by image inpainting.

In order to compute a binary mask of folds and tears, the
same algorithm is finally conducted on complementary values.
The darker pixels for folds (respectively the lighter for tears) are
selected by thresholding the RGB components. A skeletonization by
morphological thinning [15] is applied and for each skeleton, the
number of multiple points is computed. All skeletons without mul-
tiple points are retained; they correspond to straight lines, which is
the general shape of a F/T. All parts of skeletons for which the length
between two multiple points is lower than 64 um are removed. And
finally, all skeletons having more than three multiple points are also
removed as they may correspond to inherent structures of the tis-
sue. Fig. 3(a) shows a sub part of a CD20 image with both folds and
tears. The lighter areas in the right corner correspond to interfol-
licular tissue and are not considered as tears. Fig. 3(b) shows the
binary mask obtained from our algorithm. The ‘missing’ tissue is
finally reconstructed by image inpainting according to the MAT-
LAB algorithm of [13] based on a neighborhood texture analysis

(Fig. 3(c)).
2.5. Registration

To provide the histological grading of a follicular lymphoma
(FL), the pathologist has to manually count the average number of
centroblasts (CB) in ten random standard microscopic high power
fields (HPF) observed in an H&E image at 40 x magnification. With
a classical optical microscope, each HPF is a circle; its standardized

size is 0.18 mm?2. For automated measurements, several parts of
follicular areas can be assembled to obtain a ‘virtual’ HPF, provided
that their cumulated area is equal to the HPF size. Even more, the
virtual HPF may have an unusual shape such as a triangle, and an
ellipse. But H&E images are not sufficiently contrasted for delim-
iting follicle boundaries, so that is why the most common way to
solve this problem is to use IHC images such as CD20 staining. Of
course, H&E and CD20 images have to come from a pair of seri-
ally cut sections so that the morphology between these sections
remains pretty similar. Therefore, a registration step is required to
be able to map the follicle boundaries found in CD20 images onto
corresponding H&E images.

Once the serial tissue sections have been laid on slides before
being stained, each slide will not match identically in terms of posi-
tion and orientation. Moreover, the staining protocols may involve
the slides to be placed a few seconds in a microwave, thus yield-
ing to some shrinkage of tissue. The registration procedure has to
take into consideration these constraints. Owing to the strong color
difference between H&E and CD20 images, the registration algo-
rithms based on intensity patterns via correlation metrics are not
well suited. It is preferable to use feature-based methods finding
correspondence between lines and contours [11,12] and it is much
faster; borders of the binary masks obtained in the first background
segmentation will provide us these contours.

Several areas of tissue can be obtained while extracting one sec-
tion in the paraffin embedded block and those who are greater
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Fig. 4. Registration using H&E (reference) and CD20 (target). (a) Control points from the boundaries of the two initial binary masks. (b) Shape matching of control points. (c)
Reconstructed CD20 image and its segmented background (to be compared to Fig. 2(a)).
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Fig. 5. CD20 image before and after decorrelation stretching. (a)-(c) Respectively R, G, B original components. (d)-(f) Respectively R4, G4, By components after decorrelation,

median filtering and adaptive equalization of histograms.

than 1.28 mm? are retained after background segmentation. In our
approach, each areais processed separately; the centroid and major
axis orientation is computed in both the H&E (reference) and CD20
(target) images and areas are first translated and rotated accord-
ing to these values. It can be observed that the H&E could be used
for the target and the CD20 for the reference, however, the objec-
tive is to perform measurements in the H&E images and as a result,
the preservation of both images is required. Lastly, the registra-
tion algorithm provides a distortion map for each tissue area. A
new CD20 image is then computed on which the following follicle
segmentation step will be applied. Fig. 4 illustrates the registra-
tion procedure with (Fig. 4(a) and (b)) the control points of an
H&E/CD20 pair before and after shape matching and, (Fig. 4(c)),
the new registered CD20 image.

2.6. Follicle segmentation

In this work, segmentation of follicles is performed on CD20
images, where we are able to determine the follicle boundaries.
The boundaries are transferred, in a second step, to segment the
follicles on H&E images at a higher resolution.

2.6.1. Pre-segmentation in CD20 images

In CD20 stained tissues, follicle areas appear as brown objects
(that means essentially red, with green in a smaller quantity)
whereas the inter-follicular space appears as a lighter blue area.
As a result, we based the color components for detecting follicles
on blue and red channels. However, the RGB color space is known to
be highly correlated; we thus apply decorrelation stretching [16].
First, the eigenvectors and eigenvalues of X (the covariance matrix

of the initial data in the original RGB space) are calculated and the
stretching vector S is computed as:

S= g (1)

N/A'i,ji%j:)‘-i,j =0
Here, S is a diagonal matrix, o is the desired standard deviation
of the RGB channels in the output image and A;; are the eigenvalues
of Xy. With D being the eigenvectors matrix of X, each pixel x in
the original image is then transformed to y using:

y = DSD}, (2)

The three components in y are smoothed using median filter-
ing (kernel size 3 x 3) and an adaptive equalization of histograms
is applied. For clarification purposes, this new decorrelated color
space is called R;G4B4. We have chosen an adaptive equalization
(computed for each pair) rather than a global one (computed on
a set of pairs) since the tissue preparation protocol often yields to
staining gradients. Fig. 5 shows the initial RGB components and the
final Ry, G4, B4 components for a CD20 image. The follicles appear
more contrasted and homogeneous, especially in the R; and By
channels.

Once the R;G4B; components are computed, Ry and B, are
thresholded according to the Otsu algorithm to generate two binary
masks BMg and BMg [17]. From the binary masks, A; in (3) pro-
vides the most likely areas of follicles; A4 in (6) is the union of most
likely background and inter-follicular areas whereas A, and A3 in
(4) and (5) provide the pixels for which there exists an uncertainty.
They can belong to follicles, background or inter-follicular areas
and require further processing.

A1 = BMgr N BMpg 3)
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Fig. 6. Pre-segmentation on a CD20 image. Automated (green) vs. expert ground
truth (blue). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of the article.)

Ay = BMg N BM§ (4)
A3 = BMS N BMp (5)
As = BM§ n BM§ (6)

First, pixels in A, and A3 that are close to pixels in A; (that is
belonging to the morphological external gradient of A; ) are merged
to the FL class if and only if their R;G4By value is close to the mean
RyG4By value of the adjacent FL. The set S of aggregated points is
defined in (7).

3S, Vx € {8p(A1)\A1} N {Ay UA3} -
7

xeS=>x—-Ny cX)<¢

In(7), the grid G used is the 8-connexity and Bis the square struc-
turing element of size 1. In our application, ¢ is fixed to 5 for each of
the three RyG4B4 components. Then Sis used to reconstruct the con-
nected elements of Ay, followed by those of A3. The morphological
reconstruction of g from f[18,19] is based on the dilation opera-
tor conducted until stability or idempotence according to (8). The
follicular area, {FL}, is given by (9). {FL} at this point still requires
refinement.

Re(f) = 3§"() 8)
(FL} = A1 URDSRL(S) 9)

Finally, the concave elements of {FL} are separated using the
watershed algorithm [20], the initial markers being provided by a
distance function computed on the {FL} binary mask. In order to
limit the over-segmentation, all follicle areas which are joined by a
watershed line whose color intensity is close to the two neighbors
are merged. The objects smaller than 0.0256 mm? (approximately
15% of a HPF) are also removed. Fig. 6 shows an enlarged part of the
resulting mask. The ‘ground truth’ delineated by an expert is shown
in blue. The green lines correspond to the automated algorithm.
Some differences appear for small parts of follicles that have not
been retained by the expert but nevertheless are detected by the
proposed algorithm.

Fig. 7. Comparing manual and automated segmentation. Four statistical values.

2.6.2. Transfer in H&E images

Due to slide preparation protocols used for both CD20 and H&E
images, their binary masks ‘tissue vs. background’ may not be
exactly stackable. In a same tissue area, some parts may have been
shifted and/or rotated while the others are not. The final conse-
quence usually results in a tear or a fold at this location. It is the
main reason why we propose the inpainting process followed by a
registration step to address shape matching [11]. The boundaries
obtained by the process on CD20 are transferred on H&E images,
where they can be refined.

2.7. Quality control of segmentation

In the proposed algorithm, many choices have to be made for
tuning some of its inner parameters, such as the color components
to use, some values for thresholding, sizes of structuring elements
for morphological operators, minimal area of objects to be kept
and so on. To validate the choices made, we compare the auto-
mated results with a ground truth provided by an expert. Of course,
this ground truth may be discussed since there is always an impor-
tant inter-rater variability between experts and also an intra-rater
variability. But in the context of a proof of concept, we only dis-
pose of six binary masks of follicle areas, manually delineated from
the CD20 images. By comparing these six binary masks with those
provided by the automated system, four scalar values p, g, 1, s as
explained in Fig. 7 can be computed.

Also known as the Jaccard index, the Jaccard similarity coeffi-
cient is a statistical measure of similarity between sample sets. For
two sets, it is defined as the cardinality of their intersection divided
by the cardinality of their union as in (10). Even though the Jaccard
similarity is largely used in many applications, its value may not
reflect the quality of a segmentation, as shown in Fig. 8, where
J(A,B)=0.5 in both cases, A being the ground truth of the expert
and B being the automated segmentation. Some other measures
are available and are compared in [21].

_|ANE| P
T JAUB| T P+4q+r

J(A, B) (10)

In order to evaluate the quality of the final segmentation pro-
posed in this paper, the sensitivity, specificity and conformity are
computed from true positive (TP), false positive (FP), false nega-
tive (FN) and true negative (TN) as represented by p, q, 1, s. Fig. 9
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Fig. 8. Limits of Jaccard index: two very different segmentations yielding to the same value for J(A,B).

visually explains the definitions of p, g, r, s. For our medical appli-
cation, TP are the well detected pixels in follicles, FP and FN are the
over-segmented and non-segmented follicle pixels, respectively,
while TN are pixels in the background and/or in inter-follicular
areas. Given these definitions, sensitivity, specificity and conformity
(SSC) are respectively defined by (11), (12) and (13).

.. p TP
sensitivity = =1~ TPLEN (11)
P S N
specificity = STq - INTEP (12)
conformity =1 — qTH =1- FP;;)FN (13)

The sensitivity coefficient is a positive value reflecting how many
pixels from the ground truth are correctly segmented. The speci-
ficity coefficient, also positive, measures how many pixels outside
the ground truth are correctly excluded. In the context of classifica-
tion, sensitivity would be the recall for the class ‘follicle’ (also called
true positive rate) whereas specificity would be the recall for the
class ‘non-follicle’ (also called true negative rate). Finally, the con-
formity coefficient measures the ratio of mis-segmented pixels to
the number of correctly segmented pixels; it may be also negative.

It is important to note that specificity involves the computation
of true negative pixels TN, mainly the background area, which is
strongly related to the dimension of images and above all to the
relative area fraction of the tissue. If TN > TP, specificity — 1; the
best way to avoid this trap is to compute TN inside the bounding
box of the tissue or inside its convex hull.

With a perfect segmentation, these three coefficients are set to
1. In the extraordinary case where the automated segmentation

Fig. 9. Visual definition of p, g, r, s. A is the ground truth, B the automated segmen-
tation.

would provide the complementary mask of the ground truth, sen-
sitivity and specificity would be set to 0 whereas conformity would
generate a division by 0. With the examples shown in Fig. 8, SSC are
{1/2; 1; 0} for the left and {1; (N — G4)/N; 0} for the right, N being
the number of true negatives and G, being the area of the ground
truth. The higher value obtained when SSC are multiplied should
theoretically correspond to the best segmentation algorithm.

3. Results

For the six CD20 images, we dispose of a ground truth delineated
by an expert. They have been used to tune the inner parameters
of our algorithm by computing the SSC coefficients. At the end of
the boundaries pre-determination, the last question is to evalu-
ate if splitting concave objects may be useful or not. This splitting
is obtained by the watershed operator and followed by the sup-
pression of watershed lines having a similar average intensity as
compared with its two neighbors. Table 1 shows the results of
SSC coefficients without splitting. Table 2 shows the results of SSC
coefficients with splitting and merging.

As shown, the sensitivity and specificity values are practically
homogeneous and relatively close to 1 in most cases (except per-
haps for Images 4 and 5). But conformity values are very far from
1, except for Images 1 and 3 and, in a relative measure, Image 4.
The main reason is that the automated algorithm has the ability
to identify areas as a ‘follicle’ that the expert has not even identi-
fied. Moreover, the delineated contours are regular, mainly convex,
whereas the automated boundaries appear sometimes as fractal
curves.

Taking into consideration the differences described, S'S? prod-
uct is computed in both Tables 1 and 2. The two last rows compute
the product of data in the same column. In this trial, a perfect seg-
mentation would have produced the set {6; 6; 6; 36}. The influence
of a reliable ground truth is obvious. Even though the difference is
very low (+0.35% for S1S? product), the final splitting-merging step
provides the best results and has been retained by the expert.

Table 3 presents the Jaccard coefficients computed for the six
CD20 images with and without the final splitting-merging step. A
perfect segmentation would also provide a sum of 6 in our trial but
the intrinsic definition of J(A,B) confirms that it is not well suited
for this kind of application; the two sums are lower than 3.5. In
Fig. 10, curves of sensitivity, specificity, SS-product and the Jaccard
coefficient are displayed for the retained algorithm. As depicted
in Table 3, the Jaccard coefficient does not reflect the segmenta-
tion quality as its value for Image 2 is one of the lowest values and
decreases consistently with Images 4-6. The Jaccard coefficient is,
instead, strongly correlated with the conformity coefficient, as is
the ground truth provided by the expert.

The pre-determined boundaries obtained at the end of CD20
processing become the binary mask of the follicles on H&E images.
Fig. 11 shows the binary mask presenting the most likely areas of
follicles in Fig. 2(b) which we propose as an input to the ‘centrob-
last detection’ stage, out of the scope of this paper. Without the
use of the CD20 twin image, this result would not have been reach-
able due to the poor contrast encountered. The binary mask is, of
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Table 1
SSC coefficients without final splitting/merging procedure.

CD20 image number

1 2 3 4 5 6 Sum
Sensitivity' 0.942 0.944 0.888 0.945 0.924 0.950 5.593
Specificity? 0.910 0.918 0.964 0.677 0.773 0.811 5.053
Conformity 0.693 0.008 0.330 0.182 0.051 -0.103 1.161
S'S? product 0.857 0.867 0.856 0.640 0.714 0.770 28.3
Table 2
SSC coefficients with final splitting/merging procedure.
CD20 image number
1 2 3 4 5 6 Sum
Sensitivity' 0.951 0.942 0.889 0.941 0.934 0.955 5.612
Specificity? 0.912 0.917 0.965 0.693 0.767 0.805 5.059
Conformity 0.712 —-0.008 0.353 0.210 0.048 -0.127 1.188
S1S? product 0.867 0.864 0.858 0.652 0.716 0.769 284
Table 3
Jaccard coefficients for the two different methods.
Jaccard CD20 image number
coefficient 1 2 3 4 5 6 Sum
Without splitting 0.765 0.502 0.599 0.550 0.513 0.476 3.405
With splitting 0.776 0.498 0.607 0.559 0.512 0.470 3.422

course, enlarged to return back to the original 40x resolution. In
this final stage, no ground truth is available so the refinement must
be conducted without reference.

4. Discussion

This paper presents a methodology for achieving segmentation
of follicle areas in virtual slides of follicular lymphomas, before
applying a further step dedicated to full grading. It is a proof of
concept, which should not be seen as the ultimate solution but as a
general framework showing the feasibility to use both IHC and H&E
images for accurate follicle segmentation. Many points have to be
discussed and this paper tries to point out the main challenging
issues to take into account in future work.

4.1. Virtual slide preparation

For this trial, the twelve images used come from the same
laboratory, i.e. they have been prepared according to the same

0.4
0.3
0.2 —+— Sensitivity
—m— Specificity
0.1 SS Product
-=— Jaccard
0
1 2 3 4 5 6

Fig. 10. Quality control of the final segmentation in CD20 images. Sensitivity, speci-
ficity and their product are compared with the Jaccard coefficient.

protocol and digitized on the same device. In a future context
of a computer-aided diagnosis system (CADS), it is mandatory to
become independent from the origin of the VS. Since it is impossible
to control or systematize the preparation of slides in a labora-
tory, one can just hope that the standardized staining protocols
are respected and fully automated to guarantee the constancy of
quality. With respect to digitizers, they now embed an automatic
color correction to standard using an ICC profile [22], which may
be applied or ignored. Combined with a decorrelation of RGB color
components, one can assume that input images are correctly pre-
sented. Indeed, a good CADS should also be able raising an alert
when staining of input images seems to be far from the expected
one.

Fig. 11. Final segmentation as a binary mask of follicles.
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4.2. Tuning of inner parameters

As in all applications dealing with object segmentation, many
inner parameters exist. They are linked to image processing oper-
ators used all along the algorithm: threshold level for background
segmentation, size of a median filtering for smoothing, size of struc-
turing elements with morphological operators used to clean binary
masks and so forth. Even the sequence of operators themselves may
be considered as an inner parameter; the number of possibilities is
exponential. In the past, we employed some statistical parameter
optimization techniques to select the set of parameters to be used
in a CAD system [23] and in our future work, we will employ sim-
ilar approaches for optimization. In this paper, one of the points
we focus on is the way to correctly estimate a segmentation qual-
ity. Rather than the Jaccard index, we recommend to compute the
sensitivity, specificity and conformity indexes and then to refine the
sequence of operators and/or inner parameter settings with the
goal to improve their values. This method is also useful for the com-
parison of algorithms designed and developed to perform the same
task.

4.3. Registration step

The registration step is an intrinsic part of our framework since
we have to manage serial sections of tissue. For this trial, we used
six pairs of IHC-H&E images for which the relative shape was pre-
served from one section to its twin neighbor. Due to the limited but
non-homogeneous variations of orientation in our application, reg-
istration acts mainly as a non-uniform smoothing. In daily practice,
however, our algorithm should be applied to image pairs where one
image sharply contrasts its corresponding image, especially in cases
where a large part is missing from one or both of the pairs and this
piece is in a different location on each image. The algorithm used in
this trial, based on shape matching, would thus act as a “morphing”
process and results would drastically decrease.

Therefore, in a future work, we will have to avoid this trap by
using another registration algorithm which can take into account
both tissue boundaries and other local features by locally warp-
ing some areas of the target image. These algorithms belong to
non-rigid transformations. The main challenges will then to find
corresponding points between IHC and H&E images; one solution
should be to consider white areas such as blood vessels.

4.4. Boundary transfer on H&E images

After CD20 processing and registration, we may encounter the
following obstacles with the boundaries obtained: differences in
boundary matching of follicles in H&E images and others where the
boundaries are shifted. Furthermore, folds and tears may appear
on H&E images whereas a follicle has been detected at the same
location in its twin CD20 image. Future work will consist to refine
the pre-segmented boundaries using, for example, Active Contours
(AC) [25] in H&E images. The initial active contours would be the
boundaries obtained at the end of CD20 processing. The AC could
avoid the problems of missing parts and overlaps, such as folds and
tears. This process also has the potential to merge follicular areas
that were over-segmented on CD20 images, allowing to remove
areas of poor quality, small size or obscured by a hemorrhagic
invasion, resulting in an accurate representation of follicular areas.

4.5. Validation of results

With the new digital pathology environment, it is quite a chal-
lenging proposition to request a pathologist to delineate regions of
interest on images of size 100k x 100 k. Even a dedicated patholo-
gist will take a very long time to accomplish this task. Additionally,

as many studies have shown that the inter- and intra-rater vari-
ability in FL grading by experts ranges between 61% and 73% [2],
thus making it very difficult, if not impossible, to compare auto-
mated results with a gold standard. Coefficients such as sensitivity,
specificity and conformity, as opposed to utilizing the common Jac-
card index, can help in refining sub-parts of a general algorithm.
In this discussion, we propose reducing the expert workload by
making use of stereology such as in [24] in order to ask the expert
to only delineate regions of interest for which a point of the grid
is present. If the grid spacing fits the size of objects to be detected,
the ground truth will be statistically reliable. By comparing only the
corresponding elements, thanks to a morphological reconstruction,
the SSC coefficients will provide a good estimation of the global
segmentation quality.

5. Conclusion

In this paper, we present a general framework for segmenting
follicular areas before performing histological grading. Following
the current practice of the pathologist, we start from a low reso-
lution IHC image, in which the contrast is known to be correct, to
generate a mask of the follicular boundaries. We then map these
boundaries onto a corresponding registered H&E image. Our algo-
rithm is built from modular elements that are easily modifiable in
order to make changes for increasing performances. Despite the
huge size of virtual slide images, our algorithm is able to process
them in one pass on a personal computer. Its outcome is a binary
mask of likely follicular areas in which high power fields will be
defined. It thus allows for the following follicular lymphoma grad-
ing system (i) to process the whole slide at high resolution, (ii) to
obtain statistics on grading distribution and (iii) to assess the tumor
heterogeneity. We also propose a general framework for the eval-
uation of segmentation results, which takes into account multiple
facets of segmentation errors.
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