
1

Image Classification of Human Carcinoma Cells Using Complex
Wavelet-Based Covariance Descriptors
Furkan Keskin1, Alexander Suhre1, Kivanc Kose1, Tulin Ersahin2, A. Enis Cetin1, Rengul
Cetin-Atalay2,∗

1 Electrical and Electronics Engineering Department/Bilkent University, Ankara, Turkey
2 Department of Molecular Biology and Genetics/Bilkent University, Ankara, Turkey
∗ E-mail: rengul@bilkent.edu.tr, cetin@bilkent.edu.tr

Abstract

Cancer cell lines are widely used for research purposes in laboratories all over the world. Computer-

assisted classification of cancer cells can alleviate the burden of manual labeling and help cancer re-

search. In this paper, we present a novel computerized method for cancer cell line image classifica-

tion. The aim is to automatically classify 14 different classes of cell lines including 7 classes of breast

and 7 classes of liver cancer cells. Microscopic images containing irregular carcinoma cell patterns are

represented by subwindows which correspond to foreground pixels. For each subwindow, a covariance

descriptor utilizing the dual-tree complex wavelet transform (DT-CWT) coefficients and several mor-

phological attributes are computed. Directionally selective DT-CWT feature parameters are preferred

primarily because of their ability to characterize edges at multiple orientations which is the characteris-

tic feature of carcinoma cell line images. A Support Vector Machine (SVM) classifier with radial basis

function (RBF) kernel is employed for final classification. Over a dataset of 840 images, we achieve

an accuracy above 98%, which outperforms the classical covariance-based methods. The proposed sys-

tem can be used as a reliable decision maker for laboratory studies. Our tool provides an automated,

time- and cost-efficient analysis of cancer cell morphology to classify different cancer cell lines using

image-processing techniques, which can be used as an alternative to the costly short tandem repeat

(STR) analysis. The data set used in this manuscript is available as supplementary material through

http://signal.ee.bilkent.edu.tr/cancerCellLineClassificationSampleImages.html.

Introduction

Automatic classification of biomedical images is an emerging field, despite the fact that there is a long

history of image recognition techniques [1]. Automated classification of carcinoma cells through morpho-

logical analysis will greatly improve and speed up cancer research conducted using established cancer
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cell lines as in vitro models. Distinct morphologies of different types and even sub-types of cancer cells

reflect, at least in part, the underlying biochemical differences, i.e., gene expression profiles. Moreover,

the morphology of cancer cells can infer invasivenes of tumor cell and hence the metastatic capability.

The change in morphologies upon treatment with agents that induce cellular responses such as cell death

or cell growth arrest [2]. Table 1 shows a summary of the different morphologies for the cancer cell lines

in the dataset. In addition, an automated morphological classification of cancer cells will enable the

correct detection and labelling of different cell lines. In molecular biology studies, experimenters deal

with a large number of specimens whose identity have to be checked recurringly during different stages

of the experiment. Therefore, predicting labels of cancer cell lines in a fast and accurate manner via a

pattern classification approach will greatly enhance biologists’ ability to identify different types of cell

lines without the need to scrutinize each and every microscopic image one by one. Although cell lines

are being used widely as in vitro models in cancer research and drug development, mislabeling cell lines

or failure to recognize any contamination may lead to misleading results. Short tandem repeat (STR)

analysis is being used as a standard for the authentication of human cell lines. However, this process

takes a long time and has to be carried out by an expert. Automated analysis, on the other hand, will

provide the scientists a fast and easy-to-use tool that they can use in their own laboratories to verify

their cell lines.

Modelling of cell morphology has been studied by several groups, for example for fission yeast in [3]

and for e. coli bacteria in [4]. In the fission yeast case, differential expression of protein affects the cell

size and, therefore, cell fate, while in the e. coli case, the topological organization is analyzed with respect

to the underlying signaling network. To the best of our knowledge there have been no studies that have

used morphology of different human cancer cell lines for classification.

Feature parameters are computed using the dual-tree complex wavelet transform (DT-CWT). In ad-

dition, directional difference scores and covariance descriptors are deployed in support vector machines

(SVM) for analysis and classification of carcinoma cell line images. Detailed descriptions of these methods

can be found in the feature extraction and classification sections; below we perform a literature search

on how these techniques are applied in the medical domain. DT-CWT is a recently developed image

decomposition method that possesses orientation selectivity and shift invariance properties lacking in the

classical discrete wavelet transform. In the biomedical image analysis literature, DT-CWT is used to

predict the histological diagnosis of colorectal lesions in colonoscopy images by employing a probabilistic
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framework where a joint statistical model for complex wavelet coefficient magnitudes is proposed [5].

In [6], authors model the marginal distributions of DT-CWT coefficient magnitudes by Rayleigh and

Weibull probability density functions to classify the zoom-endoscopy images for colorectal cancer diag-

nosis. In [7], MR images of human brain and wrist are classified using textural features extracted via

DT-CWT decomposition. Directional difference scores are first introduced in this article and applied to

our classification problem. Normalized versions of covariance descriptor, which is a matrix-form feature

describing an image region are used. In the medical domain, covariance descriptors are utilized for clas-

sification of colonic polyps in CT colonography images [8]. Our study is one of the first studies to apply

the covariance descriptors to medical image analysis domain. SVM is a well-known machine learning

algorithm that learns the decision boundaries between classes using separating hyperplanes. SVM is used

in [9] for automated prostate cancer grading on histology images. In [10], a segmentation framework for

cell microscopic images is proposed that adopts segmentation-by-classification approach and uses SVM

for pixel classification. In [11], computer-aided classification of renal cell carcinoma subtypes is performed

by using SVM. A fully automated system is presented for human cell phenotype monitoring in [12] and

subcellular phenotypes on human cell arrays are automatically classified via SVM.

In this study, discrimination of 14 classes of biomedical images is achieved, which are all images of

cancer cell lines. The dataset at hand consists of two major types of cancer cell lines, namely breast

cancer and liver cancer (hepatocellular carcinoma) with 7 sub-classes, respectively. The dataset consists

of 840 images, i.e., 60 per sub-class. Our approach aims to carry out the automated analysis by extracting

a feature vector from the images. These feature parameters reflect the large morphological diversity of

the images. Notice, however, that our software learns the specific covariances of these features from the

training set, so the model for each image class is not rigid and therefore allows for larger variation in the

image data, while maintaining its high effectivity.

This paper is organized as follows: We first present the experimental results and and then offer a

brief discussion. In the Materials section, the used cell cultures are described. In the feature extraction

section steps are described comprising image decomposition method by the dual-tree complex wavelet

transform (DT-CWT), directional difference score computation and covariance matrix construction. In

the classification section, SVM based covariance matrix classification algorithm is explained along with

the foreground-background segmentation by EM algorithm and random subwindow selection.
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Results

The dataset used in this study consists of 280 microscopic human carcinoma cell line images with each of

the 14 classes having 20 images. Images in the dataset were acquired at 10x, 20x and 40x magnification.

The size of each image was 3096×4140 pixels. 7 classes belonged to breast cancer cell lines and the other

classes belonged to liver cancer. Each cell type has a specific phenotype in terms of nuclei (spherical

vs. ovoid), nucleoli (prominent vs. hardly noticeable), size (large vs. small) and shape (round vs. cell

pods) [1]. The names of the cancer cell lines used in our study are shown in Table 2 and example images

of all 14 classes are shown in Figure 1. Aggressive cancer cells with metastatic properties switch from

an epithelial-like (epithelioid) morphology to a spindle-shaped fibroblast-like (fibroblastoid) morphology

during epithelial-mesenchymal transition (EMT), which is an indication of the invasiveness and metastatic

capability of cancer cells. While epithelioid cells have polygonal shape with regular dimensions and sharp

boundaries, fibroblastoid cells have elongated shapes and are bipolar or multipolar.

We adopt a 20-fold cross-validation strategy for the experiments. The dataset is divided into 20 disjoint

subsets and each subset consisting of 14 images is used exactly once as the test set. For k = 1...20, the

kth subset is formed by taking the kth indexed image of each class. We run 20 experiments, choosing each

image as the test image only once for each class, and obtain the average image classification accuracy

over 20 runs. The number of selected random subwindows is taken to be s = 100. We perform the

above experiment for both covariance and normalised covariance matrices, and for four different mapping

functions in (10)-(13). SVM RBF kernel parameters are chosen as γ = 0.5 and C = 1000. Experimental

results are shown in Tables 3 for 10x, Table 4 for 20x and Table 5 for 40x. These tables show that

normalised covariance matrix-based method outperforms the covariance method for all mapping functions,

achieving an accuracy above 98%. Complex wavelet and directional difference features based classification

methods (10)-(12) have higher accuracies than the classical covariance method in (13). Example images

that were incorrectly classified are shown in Figure 2.

For comparison, similar experiments were carried out with scale-invariant feature transform (SIFT)

[13] features. Table 6 shows the performance of those features. While the accuracy for discriminating

between two cancer cell lines is 100%, the SVM classifier (γ = 1.3·10−3 and C = 1.3) performs more poorly

with each added cancer cell line. Furthermore, we investigated the effect of only using the diagonal of the

normalised covariance matrix from Equation 7, i.e., the variance values of the features, as input for the
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SVM. Results can be seen in Table 7. The accuracy rates drop by approximately 10%. Therefore, using

the covariances of the features is vital for a good performance of the system. It is clearly demonstrated

via our experiments that image classification accuracy can be enhanced by exploiting the directional

information through the use of DT-CWT features and directional scores obtained by median, max and

mean functions.

Discussion

The proposed automated system for human breast and liver cancer cell line images can aid the biologist

as a second reader and avoid the need for costly and time-consuming biochemical tests. The dual-tree

complex wavelet transform and region covariance based computational framework is successfully applied

to classify the cancer cell line images. We adopt a covariance-based approach by exploiting pixel-level

attributes to construct local region descriptors encoding covariances of several attributes inside a region

of interest. Pixel attributes are extracted using directional difference scores and the DT-CWT. Since

background regions occur frequently in a cancer cell line image, we randomly sample subwindows from

the foreground image regions after foreground-background segmentation and each microscopic image is

represented by correlation matrices of certain number of subwindows sampled randomly from the whole

image. Finally, an SVM classifier with RBF kernel is trained to learn the class boundaries.

Figure 2 juxtaposes example images of cell line A that gets misclassified as cell line B, with examples

of both cell lines A and B. All images were recorded at 20x. The three cell lines shown in the figure that

get misclassified are MDA-MB-468, Mahlavu and SKHep1. Some MDA-MB-468 images get misclassified

as MDA-MB-361. Both are breast-cancer cell lines. From Figure 2, one understands that both images

have layers, i.e., they have a 3-D structure, indicated by the white areas around the cell. This may be the

reason why they get confused with one another. The liver cancer cell lines Mahlavu and SkHep1 are both

misclassified as FOCUS, which is also a liver cancer cell-line. In the Mahlavu case, the image that gets

misclassified shows several structures of significant length but short width, informally called ”pods”. The

FOCUS cell line has similar properties but, Mahlavu generally doesn’t. Also, the misclassified image in

the figure shows less informative morphological properties, other than most Mahlavu images. In the case

of SkHep1, the example image shows a sparser structure than most SkHep1 images. In the second column

of the figure there are two different example images from the FOCUS cell line in order to demonstrate its
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varying pod morphology bearing poor differntiation. In addition, this preliminary observation indicates

that when the cell lines are poorly differentiated (as in FOCUS, Mahlavu and SkHep1), their morphology

may vary, hence they are more prone to be misclassified [14] This observation can be further investigated

in the future with a larger dataset specific to these kind of undifferntiated cell lines.

We demonstrate that automatic classification of microscopic carcinoma cell line images can be reliably

performed using DT-CWT and correlation descriptors. Covariance descriptors are computed for features

extracted from 2-D DT-CWT subbands and directional difference scores. Promising classification results

were obtained by our experiments, which reveal the ability of the proposed features to characterize breast

and liver carcinoma cell line textures.

Materials and Methods

1 Cell Culture

The six hepatocellular carcinoma, one hepatoblastoma and seven breast cancer cell lines were obtained

from the following sources: FOCUS ( [15]), Hep40 ( [16]), Huh7 (JCRB JCRB0403), Mahlavu ( [17]),

PLC (ATCC CRL-8024), SkHep1 (ATCC HTB-52), HepG2 (ATCC HB-8065), BT-20 (ATCC HTB-19),

CAMA-1 (ATCC HTB-21), MDA-MB-157 (ATCC HTB-24), MDA-MB-361 (ATCC HTB-27), MDA-

MB-453 (ATCC HTB-131), MDA-MB-468 (ATCC HTB-132), T47D (ATCC HTB-133). The cell lines

were seeded into dishes with 20% confluency and grown at 37oC under 5% CO2 in standard Dulbeccos

modified Eagles medium (DMEM) supplemented with 10% FBS, 1% Non-Essential Aminoacid and 1%

penicillin/streptomycin (GIBCO Invitrogen) up to 70% confluency. The authentication of the cell lines

was regularly checked by STR profiling. Pictures were taken with Olympus CKX41 inverted microscope

using Olympus DP72 camera with 20X objective.

2 Feature Extraction

2.1 Dual-Tree Complex Wavelet Transform

The dual-tree complex wavelet transform (DT-CWT) has been recently used in various signal and image

processing applications [18], [19], [20] and [21]. It has desirable properties such as shift invariance,

directional selectivity and lack of aliasing. In the dual-tree CWT, two maximally decimated discrete
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wavelet transforms are executed in parallel, where the wavelet functions of two different trees form

an approximate Hilbert transform pair [22]. Filterbanks for DT-CWT are shown in Figure 3. Low-pass

analysis filters in real and imaginary trees must be offset by half-sample in order to have one wavelet basis

as the approximate Hilbert transform of the other wavelet basis [23]. Analyticity allows one-dimensional

DT-CWT to be approximately shift-invariant and free of aliasing artifacts often encountered in DWT-

based processing. Two-dimensional DT-CWT is also directionally selective in six different orientations,

namely, {±15,±45,±75}. We acknowledge the fact that Gabor wavelets can also give derivative into

different directions, but as pointed out in [24], ”a typical Gabor image analysis is either expensive to

compute, is noninvertible, or both. With the 2-D dual-tree CWT, many ideas and techniques from Gabor

analysis can be leveraged into wavelet-based image processing”.

Microscopic cancer cell line images contain significant amount of oriented singularities. Recently,

a Bayesian classification method that uses the sparsity in a transform domain is developed to classify

cancer cell lines [25]. Attributes like orientation selectivity and shift invariance render DT-CWT a

good choice for the processing of microscopic images with lots of edge- or ridge-like singularities. We

incorporate the complex wavelet transform into recently proposed region covariance descriptors [26] for

feature extraction from microscopic images. In the region covariance framework each pixel is mapped to a

set of pixel properties which’s covariances are measured and used as a region descriptor. We use DT-CWT

complex coefficient magnitudes in detail subbands as pixel features and compute covariance descriptors.

Augmenting covariance matrices with directional information through the use of 2-D DT-CWT helps to

improve the discriminative power of descriptors.

2-D DT-CWT of an image is obtained by four real separable transforms [27]. Real-part and imaginary-

part analysis filters are applied successively to rows and columns of the image. By addition and sub-

traction of corresponding detail subbands, we obtain a total of 16 subbands consisting of 6 real detail

subbands, 6 imaginary detail subbands and 4 approximation subbands. Two-dimensional dual-tree de-

composition is an oversampled transform with a redundancy factor of 4 (2d for d-dimensional signals).

In our work, we perform two-level 2-D DT-CWT decomposition of each biomedical image of size m× n

and use only the 2nd level detail subband coefficients to better exploit the analyticity of DT-CWT. Each

subband at the 2nd level is of size m
4 × n

4 . The original image is lowpass filtered with [ 14 ,
1
2 ,

1
4 ] filters

and downsampled by 4 in both directions to obtain a single intensity image Ia(x, y) which represents

the original image and will be used as the image to be classified. Let WR
θ (x, y) and W Im

θ (x, y) denote,
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respectively, the real and imaginary part of the 2nd level complex wavelet coefficient at the position (x,y)

corresponding to directional detail subbands at orientation θ, where θ ∈ {±15,±45,±75}. The magnitude

of the complex wavelet coefficent is then given by

Mθ(x, y) =
√
WR

θ (x, y)2 +W Im
θ (x, y)2 (1)

Hence, for each pixel in the average image Ia(x, y), six complex wavelet coefficient magnitudesMθ(x, y)

representing six different orientations of DT-CWT are extracted. These magnitudes will be utilized as

features in the covariance matrix computation for randomly sampled regions of the image Ia(x, y). The

computational complexity of (DT-CWT) is O {M · N}, where M · N refers to the number of pixels in

the image.

2.2 Directional Differences

In order to account for the large morphological variation of the images in our dataset, we evaluated

differences between pixels in various directions. Consider a point p1 on a two-dimensional function

I(x, y). Now consider a second point p2. The Euclidean distance between p1 and p2 is d and p2 lies on

line that has an orientation of angle α with respect to the x-coordinate, i.e., p2 lies on a circle, which’s

center point is p1 and has a radius d. The difference between p1 and p2 can be written as

T (d, α) = |I(x, y)− I(x+ d · cosα, y + d · sinα)| . (2)

Now consider we want to compute a couple of difference values for equidistant concentric circles where

the largest circle has radius R and the smallest has radius R/A, where A is an integer with values ranging

from [1, R]. When the parameters R and A are fixed, we can rewrite the above equation as

T (i, α) =

∣∣∣∣I(x, y)− I(x+ i
R

A
· cosα, y + i

R

A
· sinα)

∣∣∣∣ , (3)

where i ∈ 1, 2, ..., A. We can compute a score for each α value by computing a function with respect to

i, as

sα = F⟩(T (i, α)). (4)
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For example, F⟩ can be the median function. In that case sα is simply the median of all the differences

between the center pixel and the points at distances iRA at the fixed orientation α. We use these scores

as features in covariance matrix computation. Three different functions, namely median, max and mean

functions, are employed for F⟩ in this study. For each image Ia(x, y) obtained according to the dual-tree

complex wavelet section, 8 output images of the same size are generated as the result of the function F⟩,

corresponding to 8 different orientations when the radius d is chosen as 5 in the experiments. Hence, in

addition to DT-CWT features, each pixel (x,y) of the image Ia has 8 attributes, which denote the scores

sα for 8 different α values.

The computational complexity of the directional difference operation is O {n · a2}, where n and a

refer to the number of digits of the pixelsand the number of considered angles, respectively.

2.3 Covariance Matrices for Cell Line Description

Successfully employed in texture classification [28], pedestrian detection [29] and flame detection [30],

covariance descriptors enable the combination of different features over an image region of interest. Given

an intensity image I of size m× n, we define a mapping ϕ from image domain to feature domain as

F (x, y) = ϕ(I, x, y) (5)

where each pixel (x,y) is mapped to a set of features and F is the m×n×d dimensional feature function.

For a given subwindow R consisting of n pixels, let (fk)k=1...n be the d-dimensional feature vectors

extracted from R. Then, the covariance matrix of region R can be computed as

C =
1

n− 1

n∑
k=1

(fk − µ)(fk − µ)T (6)

where µ is the mean of the feature vectors inside the region R. The covariance matrix is symmetric

positive-definite and of size dxd. There exists a very efficient multiplier-less implementation of covariance

descriptors, called co-difference matrices, which have been shown to yield comparable performances to

the original ones [31].

In this study, normalized covariance matrices are used as in [32].



10

Ĉ(i, j) =


√
C(i, j), if i = j

C(i,j)√
C(i,i)C(j,j)

, otherwise
(7)

With

Mθ(x,y) = [Mθ1(x, y)...Mθ6(x, y)] (8)

and

skα(x,y) = [skα1
(x, y) ... skα8

(x, y)] (9)

where θ1...θ6 correspond to the six orientations of DT-CWT detail subbands {±15,±45,±75}, Mθ(x, y)

is as defined in Equation (1), α1...α8 correspond to the eight orientations of directional difference score

estimation and k = 1, 2, 3 denote, respectively, the median, max and mean functions F⟩ in the directional

differences section, feature mapping functions employed in this study are

ϕ1(I, x, y) = [Ia(x, y) |Ix| |Iy| |Ixx| |Iyy|Mθ(x,y) s
1
α(x,y)]

T , (10)

ϕ2(I, x, y) = [Ia(x, y) |Ix| |Iy| |Ixx| |Iyy|Mθ(x,y) s
2
α(x,y)]

T , (11)

ϕ3(I, x, y) = [Ia(x, y) |Ix| |Iy| |Ixx| |Iyy|Mθ(x,y) s
3
α(x,y)]

T , (12)

ϕ4(I, x, y) = [Ia(x, y) |Ix| |Iy| |Ixx| |Iyy|]T (13)

where |Ix| and |Ixx| denote the first- and second-order derivatives at (x, y) of the image Ia.

The computational complexity of covariance matrix computation is O {d2}, where d refers to the

number of features in the subimage.



11

3 Classification Using a Multiclass SVM

The images in our dataset show a large amount of background pixels. Clearly, the background is not

discriminative. Therefore, we address the issue of segmenting the images into foreground and background

before classification. For our dataset, a simple thresholding scheme is not sufficient for segmentation,

since foreground pixels have a large variance and may therefore have values higher and lower than the

background pixels. We modeled the image as a mixture of two Gaussians, representing the foreground

and background pixels, respectively. Using this model, an Expectation-Maximization (EM) algorithm

was applied for segmentation. The result is noisy, so a morphological closing operation was applied,

followed by median filtering. We obtained the sizes of the closing and median filter kernels by comparing

the scores of the segmentation results of various kernel sizes. The used score was first described in [33]

and evaluated in [34]. Examples can be seen in Figure 4.

Since it is necessary to focus on foreground-like regions in carcinoma cell line images, s analysis square

windows are randomly selected, as in [35], from each image with the two constraints: the percentage of

the foreground pixels in the selected region of an image must be above 50 and the variance of the selected

region must exceed an image-dependent threshold, which is the variance of the whole image.

For each subwindow, a covariance matrix is computed using Equation (6) for each of the feature

mapping functions in (10)-(13). The image signature is composed of s covariance matrices of the same

size. Each class is represented by s×#(images in each class) covariance matrices. Covariance matrices

are symmetric positive-definite and do not lie in the Euclidean space; so, they are vectorized resulting in

d(d+ 1)/2-dimensional vectors for dxd matrices. A multiclass SVM classifier is trained with RBF kernel

in the d(d+1)/2-dimensional vector space using the training points. SVM algorithm is implemented using

LIBSVM library [36]. For each test subwindow, the corresonding covariance descriptor is vectorized and

fed into the trained SVM model for prediction. Therefore, there exist s labels for each microscopic image

corresponding to s subwindows, and the image in question is assigned the label that gets the majority of

votes among s labels. The above process is re-executed using normalised covariance matrices instead of

unnormalised covariance matrices. In order to compare the discriminative power of our features with more

traditional one, we carried out similar experiments with SIFT [13] features for the 20x images. In SIFT,

feature points are extremas in scale-space,i.e., a difference-of-gaussians (DoG) pyramid. The method is

invariant to scale, orientation and location of the features, which makes it a commonly-used method in

the field of computer vision. In our experiments, SIFT features are computed on the foreground that
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is found according to the description above. The resultant feature vectors for the images were then fed

into an SVM. Table 6 shows the performance of those features. While the accuracy for discriminating

between two cancer cell lines is 100%, the SVM classifier performs more poorly with each added cancer

cell line.

The computational complexity of SVM classification in the test phase is O {(d · (d + 1)/2) · S} [37],

where d and S refer to the number of features and the number of support vectors, respectively.

Availability and Future Directions

The software can be tested at http://signal.ee.bilkent.edu.tr/cancerCellLineClassificationEngine.html.

The datasets used in this study can also be downloaded from there and can be used by fellow researchers

in future studies. Images to be uploaded should be recorded using either 10x, 20x or 40x magnification

and should be in JPG format. The authors are currently working on making the described procedure

more computationally efficient by using a single-tree approximation to the dual-tree complex wavelet

transform used in this study.
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Supporting Information Legends

The supporting information consists of a RAR file named ’Cetin - Cancer Cell Line Classification

Software - V1.rar’. This file includes several MATLAB files that can be used to evaluate the iden-

tity of test images provided by the user. Note that an online version of this program is available at

http://signal.ee.bilkent.edu.tr/cancerCellLineClassificationEngine.html and a dataset of images is avail-

able at http://signal.ee.bilkent.edu.tr/cancerCellLineClassificationSampleImages.html.
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Figure Legends

Figure 1: Sample images from different cancer cell line classes. a) BT-20, b) Focus, c) HepG2,

d) MDA-MB-157, e) MV, f) PLC, g) SkHep1, h) T47D.

Figure 2: Examples of misclassified images (20x). Misclassified images are shown in the first

column. Examples from their true cell line are given in the second column. Images in the third column

show examples of the cell line that the images got misclassified into.

Figure 3: Filterbanks for the dual-tree complex wavelet transform.

Figure 4: Examples of segmentation into foreground and background. a) Original image, b)

EM Segmentation, c) EM segmentation followed by morphological closing and median filtering.
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Tables

Table 1: Morphology of cancer cell lines used in this study.

Morphology Cancer Type
Cell Line Shape Shape Growth Source Classification Disease

properties

BT-20 epithelioid stellate adherent mammary Basal A Adenocarcinoma
gland breast

CAMA-1 epithelioid grape-like adherent mammary Luminal Adenocarcinoma
gland breast

MDA- epithelioid stellate adherent mammary Basal B Medullary
MB-157 gland breast carcinoma
MDA- epithelioid grape-like adherent mammary Luminal Metastatic
MB-361 gland breast adenocarcinoma
MDA- epithelioid grape-like adherent mammary Luminal Metastatic
MB-453 gland breast carcinoma
MDA- epithelioid grape-like adherent mammary Basal A Metastatic
MB-468 gland breast adenocarcinoma
T47D epithelioid mass adherent mammary Luminal Invasive ductal

gland breast carcinoma
FOCUS fibroblastoid polygonal to adherent liver poorly Hepatocellular

spindle-shaped differentiated carcinoma
Hep40 epithelioid polygonal adherent liver well Hepatocellular

differentiated carcinoma
HepG2 epithelioid polygonal, adherent liver well Hepatocellular

grow as clusters differntiated carcinoma
Huh7 epithelioid polygonal adherent liver well Hepatocellular

differentiated carcinoma
Mahlavu fibroblastoid polygonal to adherent liver poorly Hepatocellular

spindle-shaped differentiated carcinoma
PLC epithelioid polygonal adherent liver well Hepatocellular

differntiated carcinoma
SkHep1 fibroblastoid polygonal to adherent liver poorly Hepatocellular

spindle-shaped differentiated carcinoma
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Table 2: Names of cancer cell lines used in this study.

Breast cancer Liver cancer
cell line cell line

BT-20 FOCUS
CAMA-1 Hep40

MDA-MB-157 HepG2
MDA-MB-361 Huh7
MDA-MB-453 Mahlavu
MDA-MB-468 PLC

T47D SkHep1
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Table 3: Average classification accuracies (in %) of 10x carcinoma cell line images over 20 runs using

SVM with RBF kernel.

Feature Covariance Normalised Covariance
mapping -based -based
function classification classification
ϕ1(I, x, y) 96.8 97.5
ϕ2(I, x, y) 96.8 98.6
ϕ3(I, x, y) 96.4 97.1
ϕ4(I, x, y) 77.5 86.1
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Table 4: Average classification accuracies (in %) of 20x carcinoma cell line images over 20 runs using

SVM with RBF kernel.

Feature Covariance Normalised Covariance
mapping -based -based
function classification classification
ϕ1(I, x, y) 97.5 99.3
ϕ2(I, x, y) 96.8 98.6
ϕ3(I, x, y) 97.9 99.3
ϕ4(I, x, y) 77.9 85.7
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Table 5: Average classification accuracies (in %) of 40x carcinoma cell line images over 20 runs using

SVM with RBF kernel.

Feature Covariance Normalised Covariance
mapping -based -based
function classification classification
ϕ1(I, x, y) 89.3 95.7
ϕ2(I, x, y) 90.0 96.4
ϕ3(I, x, y) 92.5 96.8
ϕ4(I, x, y) 63.2 85.0
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Table 6: Classification accuracies for SIFT features.

Number of Classification
cell lines accuracy in %

2 100.00
3 80.00
4 66.25
5 60.00
6 51.67
7 56.43
8 47.50
9 42.22
10 38.50
11 35.91
12 35.00
13 34.23
14 36.07
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Table 7: Classification accuracies for variance values only.

Magnification Classification
accuracy in %

10x 84.60
20x 84.60
40x 80.00


