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Abstract

In this paper, an adaptive color transform for image compression is introduced. In each block

of the image, coefficients of the color transform are determined from the previously compressed

neighboring blocks using weighted sums of the RGB pixel values, making the transform block-

specific. There is no need to transmit or store the transform coefficients because they are estimated

from previous blocks. The compression efficiency of the transform is demonstrated using the JPEG

image coding scheme. In general, the suggested transformation results in better PSNR values for

a given compression level.
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I. INTRODUCTION

Image compression is a well-established and extensively studied field in the signal process-

ing and communication communities. Although the “lossy” JPEG standard1 is one of the

most widely accepted image compression technique in modern day applications, its result-

ing fidelity can be improved. One possible idea is to find a color transform that represents

the RGB components in a more efficient manner and can thereby replace the well-known

RGB-to-YCbCr or RGB-to-YUV color transforms, used by most practitioners. Usually such

approaches aim at reducing the correlation between the color channels2. An optimal solu-

tion would be to use Karhunen-Loève Transform (KLT), see3. However, in KLT there is an

underlying wide-sense stationary random process assumption which may not be valid in nat-

ural images. Another approach to an optimal color space projection on a four-dimensional

colorspace was developed in4.

A new transform based on the color content of a given image is developed in this paper.

The proposed transform can be used as part of the JPEG image coding standard, as well as

part of other image and video coding methods, including the methods described in5,6 and7.

II. ALGORITHM

A typical colorspace transform can be represented by a matrix multiplication as follows:
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where T = [tij]3×3 is the transform matrix, while R, G and B represent the red, green

and blue colour components of a given pixel, respectively, and D, E, F represent the trans-

formed values, see8 and? . For example, JPEG uses luminance-chrominance type colorspace

transforms and chooses the coefficients in T accordingly. Examples for these include JFIF’s

RGB-to-YCbCr9, as well as RGB-to-YUV and a digital version of RGB-to-Y’CbCr from

CCIR 601 Standard that are used in our experiments as baseline color transforms. Their

respective transform matrices are given as
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. (4)

The Y component of the resultant image is usually called the luminance component,

carrying most of the information, while the Cb and Cr components, or U V components,

respectively, are called the chrominance components.

In our approach, we manipulate the luminance component, while leaving the chrominance

components as they are, i.e., only the coefficients in the first row of the T-matrix are modi-

fied. The second and third rows of the matrix remain unaltered because in natural images,

almost all of the image’s energy is concentrated in the Y component10. As a result, most of

the bits are allocated to the Y component. Consider this: The image ’01’, from the ’Kodak’

dataset11 used in our experiments, is coded with 2.03 bits per pixel (bpp) using standard

JPEG with a quality factor of 80%. The PSNR is 33.39 dB. The Y component is coded

with 1.76 bpp, while the chrominance components are coded with 0.27 bpp. Similarily, the

’Barbara’ image from our expanded dataset is coded with 1.69 bpp and a PSNR of 32.98

dB, when coded with a quality factor of 80%. The Y component is coded with 1.38 bpp,

while the chrominance components are coded with 0.31 bpp.

Recent methods of color transform design include12,13 and14, but all of these methods

try to optimize their designs over the entire image. However, different parts of a typical

natural image may have different color characteristics. To overcome this problem, a block

adaptive method taking advantage of the local color features of an image is proposed. In each

block of the image, coefficients of the color transform are determined from the previously

compressed neighboring blocks using weighted sums of the RGB pixel values, making the

transform specific to that particular block.
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We calculate the coefficients t11, t12, t13 of the first row of the color transform matrix,

using the color content of the previous blocks in the following manner:

t11 =
1

2
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where I denotes a three-dimensional, discrete RGB image composed of the used subimage

blocks, which are to be discussed below, M and N denote the number of rows and columns

of the subimage block, respectively, and t′1j denotes the element in the 1-st row and the j-th

column of the 3-by-3 baseline color transform matrix, e.g. RGB-to-YCbCr. Normally, M

and N are equal to 8 if only the previous block is used in JPEG coding.

Equations (5)-(7) have to be computed for each image block, therefore, the proposed

transform changes for each block of the image. The extra overhead of encoding the color

transform matrix can be easily avoided by borrowing an idea from standard DPCM coding

in which predictor coefficients are estimated from encoded signal samples. In other words,

there is no need to transmit or store the transform coefficients because they are estimated

from previously encoded blocks. However, the specific 3-by-3 color transform matrix for a

given block has to be inverted at the decoder.

Since the color transform matrix is data specific, one may ask how numerically well-

conditioned it is. A common technique to measure this is the condition number of a matrix.

The condition number is defined as the relation of the largest to the smallest eigenvalue of

a given matrix16. A condition number with value close to 1 indicates a numerically stable

behaviour of the matrix, i.e., it has full rank and is invertible. In order to investigate this,

the condition number for each transform matrix of each block of the ’Kodak’ dataset was

computed. Those results are averaged and can be seen alongside the values of the baseline

transform matrices in Table I. We find that for the given dataset, the condition number of

our transform is in fact lower than the respective condition number of the baseline transform.

It may also be of interest if our modified transform increases the interchannel correlation.

In order to investigate this, the correlation coefficients ρij, denoting the correlation between
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Baseline Condition Condition

Color Number Number

Transform Baseline Our Transform

YCbCr 1.75 1.41

Y’CbCr 1.75 1.38

YUV 2.00 1.72

TABLE I: The condition numbers of the baseline transforms and the mean of the condition number

of our transforms for the ’Kodak’ dataset.

Color ρ12 ρ13 ρ23

Transform

YCbCr -0.0008 -0.0481 0.1683

Y’CbCr -0.0006 -0.0488 0.1691

YUV -0.0008 -0.0484 0.1696

Our YCbCr 0.0087 -0.0080 0.1683

Our Y’CbCr 0.0096 -0.0056 0.1691

Our YUV 0.0087 -0.0083 0.1696

TABLE II: The average correlation coefficients ρij for the baseline color transforms and our trans-

forms as computed over the ’Kodak’ dataset.

the i-th and j-th channel of a color transformed image, were calculated for the baseline

transform matrices and for the modified transform matrices over the whole ’Kodak’ dataset.

The mean results can be seen in Table II. We find that for the given dataset, the correlation

between channels was not significantly increased by our method.

In most cameras, image blocks are raster-scanned from the sensor and blocks are fed to

a JPEG encoder one by one5. For the first block of the image, the baseline color transform

is used and the right-hand side of Equations (5)-(7) are computed from encoded-decoded

color pixel values. For the second image block these color transform coefficients are inserted

into the first row of the baseline color transform and it is encoded. The color content of the

second block is also computed from encoded-decoded pixel values and used in the coding of
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the third block. Due to the raster-scanning, the correlation between neighboring blocks is

expected to be high, therefore, for a given image block, the color content of its neighboring

blocks is assumed to be a good estimate of its own color content. Furthermore, we are not

restricted to use a single block to estimate the color transform parameters. We can also use

image blocks of previously encoded upper rows as shown in Figure 1 in which shaded blocks

represent previously encoded blocks and the black shaded block is the current block. The

neighboring blocks marked by an arrow are used for the prediction of the current block. In15

an adaptive scheme is presented in which the encoder selects for each block of the image

between the RGB, YCoCg and a simple green, red-difference and blue-difference color spaces.

This decision is signaled to the decoder as side information. Our method, however, does not

require any transmission of side information to the receiver.

The current block’s color content may be significantly different from previously scanned

blocks. In such blocks we simply use the baseline color transform. Such a situation may

occur if the current block includes an edge. We determine these blocks by comparing the

color content with a threshold, as follows

1

2
· ||xc − xp||1 > δ, (8)

where xc is the normalised weight vector of the current block’s chrominance channels, xp is

the mean vector of the chrominance channels’ weights for all the neighboring blocks used

in the prediction and δ is the similarity threshold. Note that in our predicition scheme we

are not changing the chrominance channels. Therefore, we can use these for estimating the

color content of the previous and current blocks, regardless of the changes we make in the

luminance channel. The threshold is chosen after investigating the values of the left hand

side of Equation 8 for the ’Kodak’ dataset and calculating its mean and standard deviation.

δ is then chosen according to

δ = µ + α · σ. (9)

where µ and σ denote the mean and standard deviation of the left hand side of Equation

8, respectively. α can take values between 2 and 3, since we assume a Gaussian model for

the left hand side of Equation 8. In a Gaussian distribution, 95% of the values are within

two standard deviations around the mean (µ ± 2 · σ), and about 99.7% of the values lie

within 3 standard deviations around the mean (µ ± 3 · σ). In Section III we investigate the

performance of several α values.
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Due to our prediction scheme, no additional information on the color transform needs

to be encoded by implementing a decoder inside the encoder as in standard DPCM sig-

nal encoding. It should be also pointed out that optimized color transform designs of12,13

and14 can be also used in our DPCM-like coding strategy. Instead of estimating the color

transform over the entire image the transform coefficients can be determined in the pre-

viously processed blocks as described above. The goal of this article is to introduce the

block-adaptive color transform concept within the framework of JPEG and MPEG family of

video coding standards. Therefore, a heuristic and a computationally simple color transform

design approach is proposed in Equations (5)-(7). Since only the first row of the transform

is modified it is possible to use the binary encoding schemes of JPEG and MPEG coders.

III. EXPERIMENTAL STUDIES AND RESULTS

A dataset of 41 images was used in our experiments. This includes the Kodak dataset,

10 high-resolution images (’1pmw’, ’ATI’, ’DCTA’, ’Gl Boggs’, ’Huvahendhoo’, ’Patrick’,

’PMW’, ’LagoonVilla’, ’Lake June’, ’Sunset Water Suite’) and the standard test images

Lenna, Baboon, Goldhill, Boats, Pepper, Airplane and Barbara. The high-resolution images

have dimensions ranging from 1650-by-1458 to 2356-by-1579. The JPEG coder available in

MATLAB’s imwrite function is used in our experiments. The color transformation stage

of the baseline JPEG is replaced with the proposed form of transformation. The weights

of Equations (5)-(7) are computed using the previously processed blocks neighboring the

current block as shown in Figure 1.

We show several tables, in which we alter the α value of Equation 9. We choose α to be

2, 2.5 and 3, as explained in Section II. The results can be seen in Tables III-V. Results

for using no threshold at all, i.e., the whole image being coded by our method, can be seen

in Table VI. Note that the δ threshold from Equation 8 was computed using the data from

the ’Kodak’ dataset but still performs well on the 14 additional images.

The PSNR-Gain of our method over the baseline color transform is measured at five

different compression ratios (CR), spread over the whole rate range, for each image. The

averages of these gain values are shown in the tables. Additionally, the mean of all these

gain values is presented for the whole dataset. Furthermore, a success rate for the dataset

is given. The decision for a success is binary and is made in case the average gain value of a
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given image is positive. These results show that, on average, the proposed method produces

better results than the baseline JPEG algorithm using the RGB-to-YCbCr, RGB-to-YUV

or RGB-to-Y’CbCr matrices, respectively.

In Figures IV - IV the rate-distortion curves for ’24’, ’23’ and ’Lenna’ are given. While

’24’ and ’Lenna’ are images where our method outperforms the baseline transforms, in image

’23’ this is not the case. Images with strong, saturated color content that changes abruptly

seem to perform worse with our method than with the baseline transform.

In Figure IV, a visual example of our coding results is given. In Figure IV (a), the original

cropped image is shown, while Figures IV (b)-(c) show the coded versions using Y’CbCR

and our method based on Y’CbCr, respectively.

IV. CONCLUSION

A method of extracting an image-specific color transform based on the color content of

an image is presented. The transform coefficients are adaptively computed for each image

block. The first row of the transform matrix is determined by the color component ratios of

previously compressed image blocks. Our experiments suggest that when this transform is

used in standard JPEG, it results in higher PSNR for a given CR than standard colorspace

transforms in general. Due to its conceptual simplicity and computational efficiency, our

method can also be used in video compression.
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Image Average PSNR Average PSNR Average PSNR

Gain [dB] Gain [dB] Gain [dB]

using YCbCr using Y’CbCr using YUV

as baseline as baseline as baseline

’1’ 0.0624 0.0928 0.0732

’2’ -0.0668 -0.0845 -0.0368

’3’ -0.2394 0.0824 -0.6358

’4’ -0.0325 0.0017 -0.2449

’5’ 0.0423 0.1008 0.0863

’6’ 0.0966 0.1302 0.1564

’7’ 0.0480 0.0767 0.0115

’8’ 0.0958 0.1237 0.1326

’9’ 0.1147 0.1349 0.1868

’10’ 0.1395 0.2309 0.2167

’11’ 0.0300 0.0791 0.0263

’12’ 0.0781 0.0534 0.1261

’13’ 0.1179 0.1162 0.1236

’14’ -0.0517 -0.0901 -0.0538

’15’ -0.0518 -0.0486 0.0024

’16’ 0.0812 0.1545 0.1415

’17’ 0.0845 0.1265 0.1553

’18’ 0.0952 0.1283 0.1113

’19’ 0.0500 0.1003 0.0947

’20’ 0.0399 0.0581 0.1320

’21’ 0.0799 0.1535 0.1305

’22’ 0.0642 0.1371 0.0762

’23’ -0.4293 0.0525 -1.1956

’24’ 0.1448 0.1903 0.2081

’1pmw’ 0.1832 0.1659 0.2331

’ATI’ 0.0289 0.1388 0.1586

’Airplane’ 0.5197 0.5079 0.4287

’Baboon’ 0.0003 0.2097 -0.4955

’Barbara’ 0.1054 0.1294 0.1155

’Boats’ 0.0913 0.0840 0.1348

’DCTA’ 0.2134 0.2063 0.2457

’Gl Boggs’ 0.4427 0.3519 0.4673

’Goldhill’ 0.2324 0.2395 0.2485

’Huvahendhoo’ 0.2076 0.2254 0.2698

’LagoonVilla’ 0.0791 0.0551 0.1229

’Lake June’ 0.1223 0.1211 0.1388

’Lenna’ 0.2070 0.2472 0.2197

’Patrick’ 0.1130 0.0778 0.1489

’Pepper’ 0.2158 0.2130 0.1769

’PMW’ 0.1696 0.2188 0.2078

’Sunset Water Suite’ 0.2036 0.3482 0.7866

Whole dataset 0.0910 0.1376 0.0886

Success rate 35/41 38/41 34/41

TABLE III: PSNR-Gain values for the whole dataset with different baseline color transform. PSNR-

Gain of each image is measured at different rates and averaged. α is equal to 2.5.
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Image Average PSNR Average PSNR Average PSNR

Gain [dB] Gain [dB] Gain[dB]

using YCbCr using Y’CbCr using YUV

as baseline as baseline as baseline

Whole dataset 0.0888 0.1370 0.0870

Success Rate 35/41 38/41 34/41

TABLE IV: PSNR-Gain values for the whole dataset with different baseline color transform. PSNR-

Gain of each image is measured at different rates and averaged. α is equal to 3.

Image Average PSNR Average PSNR Average PSNR

Gain [dB] Gain [dB] Gain[dB]

using YCbCr using Y’CbCr using YUV

as baseline as baseline as baseline

Whole dataset 0.0913 0.1355 0.0905

Success Rate 34/41 38/41 34/41

TABLE V: PSNR-Gain values for the whole dataset with different baseline color transform. PSNR-

Gain of each image is measured at different rates and averaged. α is equal to 2.

-

Image Average PSNR Average PSNR Average PSNR

Gain [dB] Gain [dB] Gain[dB]

using YCbCr using Y’CbCr using YUV

as baseline as baseline as baseline

Whole dataset 0.0535 0.1133 0.0430

Success Rate 30/41 33/41 30/41

TABLE VI: PSNR-Gain values for the whole dataset with different baseline color transform. PSNR-

Gain of each image is measured at different rates and averaged. No threshold was used, i.e. the

whole image was coded with our method.
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Figures

FIG. 1: A general description of our prediction scheme. To predict the color content of the black-

shaded image block, color contents of previously encoded gray-shaded blocks, marked by arrows,

are used.
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FIG. 2: PSNR-vs-CR performance of the ’24’ image from the ’Kodak’ dataset for fixed color trans-

forms and our method. (a) Original Image, (b) Rate-Distortion curve. Our method outperforms

the baseline transforms.
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FIG. 3: PSNR-vs-CR performance of the ’23’ image from the ’Kodak’ dataset for fixed color

transforms and our method. (a) Original Image, (b) Rate-Distortion curve. The baseline transforms

outperform our method.
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FIG. 4: PSNR-vs-CR performance of the ’Lenna’ image for fixed color transforms and our method.

Rate-Distortion curve. Our method outperforms the baseline transforms.
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(a)

(b)

(c)

FIG. 5: A visual result of image ’24’ from the ’Kodak’ dataset coded by JPEG using a quality

factor of 80%. (a) Original, (b) JPEG coded version using Y’CbCr and (c) JPEG coded version

using our method with Y’CbCr.
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